Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicom | GIF version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 131 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 698 con2bidc 875 con2biddc 880 pm5.17dc 904 bigolden 955 nbbndc 1394 bilukdc 1396 falbitru 1417 3impexpbicom 1436 exists1 2120 eqcom 2177 abeq1 2285 necon2abiddc 2411 necon2bbiddc 2412 necon4bbiddc 2419 ssequn1 3303 axpow3 4172 isocnv 5802 suplocsrlem 7782 uzennn 10406 bezoutlemle 11976 |
Copyright terms: Public domain | W3C validator |