![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicom | GIF version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 131 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 699 con2bidc 876 con2biddc 881 pm5.17dc 905 bigolden 957 nbbndc 1405 bilukdc 1407 falbitru 1428 3impexpbicom 1449 exists1 2138 eqcom 2195 abeq1 2303 necon2abiddc 2430 necon2bbiddc 2431 necon4bbiddc 2438 ssequn1 3330 axpow3 4207 isocnv 5855 suplocsrlem 7870 uzennn 10510 bezoutlemle 12148 |
Copyright terms: Public domain | W3C validator |