Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicom | GIF version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 130 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 130 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicomd 140 bibi1i 227 bibi1d 232 ibibr 245 bibif 688 con2bidc 865 con2biddc 870 pm5.17dc 894 bigolden 945 nbbndc 1384 bilukdc 1386 falbitru 1407 3impexpbicom 1426 exists1 2110 eqcom 2167 abeq1 2276 necon2abiddc 2402 necon2bbiddc 2403 necon4bbiddc 2410 ssequn1 3292 axpow3 4156 isocnv 5779 suplocsrlem 7749 uzennn 10371 bezoutlemle 11941 |
Copyright terms: Public domain | W3C validator |