![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicom | GIF version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 131 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 698 con2bidc 875 con2biddc 880 pm5.17dc 904 bigolden 955 nbbndc 1394 bilukdc 1396 falbitru 1417 3impexpbicom 1438 exists1 2122 eqcom 2179 abeq1 2287 necon2abiddc 2413 necon2bbiddc 2414 necon4bbiddc 2421 ssequn1 3307 axpow3 4179 isocnv 5814 suplocsrlem 7809 uzennn 10438 bezoutlemle 12011 |
Copyright terms: Public domain | W3C validator |