Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicom | GIF version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 130 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | bicom1 130 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicomd 140 bibi1i 227 bibi1d 232 ibibr 245 bibif 693 con2bidc 870 con2biddc 875 pm5.17dc 899 bigolden 950 nbbndc 1389 bilukdc 1391 falbitru 1412 3impexpbicom 1431 exists1 2115 eqcom 2172 abeq1 2280 necon2abiddc 2406 necon2bbiddc 2407 necon4bbiddc 2414 ssequn1 3297 axpow3 4163 isocnv 5790 suplocsrlem 7770 uzennn 10392 bezoutlemle 11963 |
Copyright terms: Public domain | W3C validator |