ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bicom GIF version

Theorem bicom 140
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.)
Assertion
Ref Expression
bicom ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem bicom
StepHypRef Expression
1 bicom1 131 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 bicom1 131 . 2 ((𝜓𝜑) → (𝜑𝜓))
31, 2impbii 126 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bicomd  141  bibi1i  228  bibi1d  233  ibibr  246  bibif  698  con2bidc  875  con2biddc  880  pm5.17dc  904  bigolden  955  nbbndc  1394  bilukdc  1396  falbitru  1417  3impexpbicom  1436  exists1  2120  eqcom  2177  abeq1  2285  necon2abiddc  2411  necon2bbiddc  2412  necon4bbiddc  2419  ssequn1  3303  axpow3  4172  isocnv  5802  suplocsrlem  7782  uzennn  10406  bezoutlemle  11976
  Copyright terms: Public domain W3C validator