| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicom | GIF version | ||
| Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 700 con2bidc 877 con2biddc 882 pm5.17dc 906 bigolden 958 nbbndc 1414 bilukdc 1416 falbitru 1437 3impexpbicom 1459 exists1 2152 eqcom 2209 abeq1 2317 necon2abiddc 2444 necon2bbiddc 2445 necon4bbiddc 2452 ssequn1 3351 axpow3 4237 isocnv 5903 suplocsrlem 7956 uzennn 10618 bezoutlemle 12444 |
| Copyright terms: Public domain | W3C validator |