| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicom | GIF version | ||
| Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| bicom | ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 700 con2bidc 877 con2biddc 882 pm5.17dc 906 bigolden 958 nbbndc 1414 bilukdc 1416 falbitru 1437 3impexpbicom 1458 exists1 2150 eqcom 2207 abeq1 2315 necon2abiddc 2442 necon2bbiddc 2443 necon4bbiddc 2450 ssequn1 3343 axpow3 4221 isocnv 5880 suplocsrlem 7921 uzennn 10581 bezoutlemle 12329 |
| Copyright terms: Public domain | W3C validator |