Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 195 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 140 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bitr4id 198 bibif 688 pm5.61 784 oranabs 805 pm5.7dc 944 nbbndc 1384 resopab2 4931 xpcom 5150 f1od2 6203 map1 6778 ac6sfi 6864 elznn0 9206 rexuz3 10932 xrmaxiflemcom 11190 metrest 13146 sincosq3sgn 13389 sincosq4sgn 13390 |
Copyright terms: Public domain | W3C validator |