ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2di GIF version

Theorem bitr2di 197
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2di.1 (𝜑 → (𝜓𝜒))
bitr2di.2 (𝜒𝜃)
Assertion
Ref Expression
bitr2di (𝜑 → (𝜃𝜓))

Proof of Theorem bitr2di
StepHypRef Expression
1 bitr2di.1 . . 3 (𝜑 → (𝜓𝜒))
2 bitr2di.2 . . 3 (𝜒𝜃)
31, 2bitrdi 196 . 2 (𝜑 → (𝜓𝜃))
43bicomd 141 1 (𝜑 → (𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr4id  199  bibif  702  pm5.61  798  oranabs  819  pm5.7dc  959  nbbndc  1416  resopab2  5028  xpcom  5251  f1od2  6351  map1  6935  ac6sfi  7028  elznn0  9429  rexuz3  11467  xrmaxiflemcom  11726  metrest  15145  sincosq3sgn  15467  sincosq4sgn  15468  lgsquadlem3  15723  pw1map  16272
  Copyright terms: Public domain W3C validator