| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2di | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | bitrdi 196 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bitr4id 199 bibif 702 pm5.61 798 oranabs 819 pm5.7dc 959 nbbndc 1416 resopab2 5028 xpcom 5251 f1od2 6351 map1 6935 ac6sfi 7028 elznn0 9429 rexuz3 11467 xrmaxiflemcom 11726 metrest 15145 sincosq3sgn 15467 sincosq4sgn 15468 lgsquadlem3 15723 pw1map 16272 |
| Copyright terms: Public domain | W3C validator |