![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 196 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1405 resopab2 4989 xpcom 5212 f1od2 6288 map1 6866 ac6sfi 6954 elznn0 9332 rexuz3 11134 xrmaxiflemcom 11392 metrest 14674 sincosq3sgn 14963 sincosq4sgn 14964 |
Copyright terms: Public domain | W3C validator |