ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr2di GIF version

Theorem bitr2di 197
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
bitr2di.1 (𝜑 → (𝜓𝜒))
bitr2di.2 (𝜒𝜃)
Assertion
Ref Expression
bitr2di (𝜑 → (𝜃𝜓))

Proof of Theorem bitr2di
StepHypRef Expression
1 bitr2di.1 . . 3 (𝜑 → (𝜓𝜒))
2 bitr2di.2 . . 3 (𝜒𝜃)
31, 2bitrdi 196 . 2 (𝜑 → (𝜓𝜃))
43bicomd 141 1 (𝜑 → (𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bitr4id  199  bibif  699  pm5.61  795  oranabs  816  pm5.7dc  956  nbbndc  1405  resopab2  4989  xpcom  5212  f1od2  6288  map1  6866  ac6sfi  6954  elznn0  9332  rexuz3  11134  xrmaxiflemcom  11392  metrest  14674  sincosq3sgn  14963  sincosq4sgn  14964
  Copyright terms: Public domain W3C validator