![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2di | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2di.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr2di.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
bitr2di | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2di.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr2di.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | bitrdi 196 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
4 | 3 | bicomd 141 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bitr4id 199 bibif 699 pm5.61 795 oranabs 816 pm5.7dc 956 nbbndc 1405 resopab2 4972 xpcom 5193 f1od2 6259 map1 6837 ac6sfi 6925 elznn0 9297 rexuz3 11030 xrmaxiflemcom 11288 metrest 14458 sincosq3sgn 14701 sincosq4sgn 14702 |
Copyright terms: Public domain | W3C validator |