Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stdc GIF version

Theorem bj-stdc 14052
Description: Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
bj-stdc (STAB DECID 𝜑DECID 𝜑)

Proof of Theorem bj-stdc
StepHypRef Expression
1 nndc 851 . 2 ¬ ¬ DECID 𝜑
2 bj-nnbist 14036 . 2 (¬ ¬ DECID 𝜑 → (STAB DECID 𝜑DECID 𝜑))
31, 2ax-mp 5 1 (STAB DECID 𝜑DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  STAB wstab 830  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator