Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-stab | GIF version |
Description: Propositions where a
double-negative can be removed are called stable.
See Chapter 2 [Moschovakis] p. 2.
Our notation for stability is a connective STAB which we place before the formula in question. For example, STAB 𝑥 = 𝑦 corresponds to "𝑥 = 𝑦 is stable". (Contributed by David A. Wheeler, 13-Aug-2018.) |
Ref | Expression |
---|---|
df-stab | ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | 1 | wstab 820 | . 2 wff STAB 𝜑 |
3 | 1 | wn 3 | . . . 4 wff ¬ 𝜑 |
4 | 3 | wn 3 | . . 3 wff ¬ ¬ 𝜑 |
5 | 4, 1 | wi 4 | . 2 wff (¬ ¬ 𝜑 → 𝜑) |
6 | 2, 5 | wb 104 | 1 wff (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: stbid 822 stabnot 823 dcstab 834 stdcndc 835 stdcndcOLD 836 stdcn 837 const 842 imanst 878 ddifstab 3253 bj-trst 13580 bj-fast 13582 bj-nnbist 13585 bj-stim 13587 bj-stan 13588 bj-stand 13589 bj-stal 13590 bj-pm2.18st 13591 bj-con1st 13592 bdstab 13669 exmid1stab 13840 subctctexmid 13841 |
Copyright terms: Public domain | W3C validator |