Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-trst GIF version

Theorem bj-trst 13774
Description: A provable formula is stable. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-trst (𝜑STAB 𝜑)

Proof of Theorem bj-trst
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (¬ ¬ 𝜑𝜑))
2 df-stab 826 . 2 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
31, 2sylibr 133 1 (𝜑STAB 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-stab 826
This theorem is referenced by:  bj-sttru  13775  bj-nnst  13778  bj-nnbist  13779  bj-dcstab  13791
  Copyright terms: Public domain W3C validator