Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnst GIF version

Theorem bj-nnst 14055
Description: Double negation of stability of a formula. Intuitionistic logic refutes unstability (but does not prove stability) of any formula. This theorem can also be proved in classical refutability calculus (see https://us.metamath.org/mpeuni/bj-peircestab.html) but not in minimal calculus (see https://us.metamath.org/mpeuni/bj-stabpeirce.html). See nnnotnotr 14302 for the version not using the definition of stability. (Contributed by BJ, 9-Oct-2019.) Prove it in ( → , ¬ ) -intuitionistic calculus with definitions (uses of ax-ia1 106, ax-ia2 107, ax-ia3 108 are via sylibr 134, necessary for definition unpackaging), and in ( → , ↔ , ¬ )-intuitionistic calculus, following a discussion with Jim Kingdon. (Revised by BJ, 27-Oct-2024.)
Assertion
Ref Expression
bj-nnst ¬ ¬ STAB 𝜑

Proof of Theorem bj-nnst
StepHypRef Expression
1 bj-trst 14051 . 2 (𝜑STAB 𝜑)
2 bj-fast 14053 . 2 𝜑STAB 𝜑)
31, 2bj-imnimnn 14050 1 ¬ ¬ STAB 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  STAB wstab 830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-stab 831
This theorem is referenced by:  bj-stst  14057  bj-dcst  14073
  Copyright terms: Public domain W3C validator