ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com4t GIF version

Theorem com4t 85
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4t (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 84 . 2 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
32com4l 84 1 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  86  com24  87  mopick  2097  tfri3  6346
  Copyright terms: Public domain W3C validator