ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com4t Unicode version

Theorem com4t 85
Description: Commutation of antecedents. Rotate twice. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
com4t  |-  ( ch 
->  ( th  ->  ( ph  ->  ( ps  ->  ta ) ) ) )

Proof of Theorem com4t
StepHypRef Expression
1 com4.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
21com4l 84 . 2  |-  ( ps 
->  ( ch  ->  ( th  ->  ( ph  ->  ta ) ) ) )
32com4l 84 1  |-  ( ch 
->  ( th  ->  ( ph  ->  ( ps  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4r  86  com24  87  mopick  2092  tfri3  6335
  Copyright terms: Public domain W3C validator