Step | Hyp | Ref
| Expression |
1 | | ax-17 1514 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ∀𝑦(𝜑 ∧ 𝜓)) |
2 | | hbs1 1926 |
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) |
3 | | hbs1 1926 |
. . . . 5
⊢ ([𝑦 / 𝑥]𝜓 → ∀𝑥[𝑦 / 𝑥]𝜓) |
4 | 2, 3 | hban 1535 |
. . . 4
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → ∀𝑥([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
5 | | sbequ12 1759 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
6 | | sbequ12 1759 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑥]𝜓)) |
7 | 5, 6 | anbi12d 465 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))) |
8 | 1, 4, 7 | cbvexh 1743 |
. . 3
⊢
(∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
9 | | ax-17 1514 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦𝜑) |
10 | 9 | mo3h 2067 |
. . . . . 6
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
11 | | ax-4 1498 |
. . . . . . 7
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
12 | 11 | sps 1525 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
13 | 10, 12 | sylbi 120 |
. . . . 5
⊢
(∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
14 | | sbequ2 1757 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜓 → 𝜓)) |
15 | 14 | imim2i 12 |
. . . . . . . 8
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜓 → 𝜓))) |
16 | 15 | expd 256 |
. . . . . . 7
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → 𝜓)))) |
17 | 16 | com4t 85 |
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝜓)))) |
18 | 17 | imp 123 |
. . . . 5
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝜓))) |
19 | 13, 18 | syl5 32 |
. . . 4
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) |
20 | 19 | exlimiv 1586 |
. . 3
⊢
(∃𝑦([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) |
21 | 8, 20 | sylbi 120 |
. 2
⊢
(∃𝑥(𝜑 ∧ 𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) |
22 | 21 | impcom 124 |
1
⊢
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |