| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-17 1540 | 
. . . 4
⊢ ((𝜑 ∧ 𝜓) → ∀𝑦(𝜑 ∧ 𝜓)) | 
| 2 |   | hbs1 1957 | 
. . . . 5
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | 
| 3 |   | hbs1 1957 | 
. . . . 5
⊢ ([𝑦 / 𝑥]𝜓 → ∀𝑥[𝑦 / 𝑥]𝜓) | 
| 4 | 2, 3 | hban 1561 | 
. . . 4
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → ∀𝑥([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
| 5 |   | sbequ12 1785 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 6 |   | sbequ12 1785 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑥]𝜓)) | 
| 7 | 5, 6 | anbi12d 473 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))) | 
| 8 | 1, 4, 7 | cbvexh 1769 | 
. . 3
⊢
(∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | 
| 9 |   | ax-17 1540 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑦𝜑) | 
| 10 | 9 | mo3h 2098 | 
. . . . . 6
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 11 |   | ax-4 1524 | 
. . . . . . 7
⊢
(∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 12 | 11 | sps 1551 | 
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 13 | 10, 12 | sylbi 121 | 
. . . . 5
⊢
(∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | 
| 14 |   | sbequ2 1783 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜓 → 𝜓)) | 
| 15 | 14 | imim2i 12 | 
. . . . . . . 8
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜓 → 𝜓))) | 
| 16 | 15 | expd 258 | 
. . . . . . 7
⊢ (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → 𝜓)))) | 
| 17 | 16 | com4t 85 | 
. . . . . 6
⊢ ([𝑦 / 𝑥]𝜑 → ([𝑦 / 𝑥]𝜓 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝜓)))) | 
| 18 | 17 | imp 124 | 
. . . . 5
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝜓))) | 
| 19 | 13, 18 | syl5 32 | 
. . . 4
⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) | 
| 20 | 19 | exlimiv 1612 | 
. . 3
⊢
(∃𝑦([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) | 
| 21 | 8, 20 | sylbi 121 | 
. 2
⊢
(∃𝑥(𝜑 ∧ 𝜓) → (∃*𝑥𝜑 → (𝜑 → 𝜓))) | 
| 22 | 21 | impcom 125 | 
1
⊢
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |