ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri3 GIF version

Theorem tfri3 6264
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule 𝐺 ( as described at tfri1 6262). Finally, we show that 𝐹 is unique. We do this by showing that any class 𝐵 with the same properties of 𝐹 that we showed in parts 1 and 2 is identical to 𝐹. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri3.1 𝐹 = recs(𝐺)
tfri3.2 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
Assertion
Ref Expression
tfri3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺

Proof of Theorem tfri3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . 4 𝑥 𝐵 Fn On
2 nfra1 2466 . . . 4 𝑥𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))
31, 2nfan 1544 . . 3 𝑥(𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)))
4 nfv 1508 . . . . . 6 𝑥(𝐵𝑦) = (𝐹𝑦)
53, 4nfim 1551 . . . . 5 𝑥((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))
6 fveq2 5421 . . . . . . 7 (𝑥 = 𝑦 → (𝐵𝑥) = (𝐵𝑦))
7 fveq2 5421 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
86, 7eqeq12d 2154 . . . . . 6 (𝑥 = 𝑦 → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐵𝑦) = (𝐹𝑦)))
98imbi2d 229 . . . . 5 (𝑥 = 𝑦 → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦))))
10 r19.21v 2509 . . . . . 6 (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
11 rsp 2480 . . . . . . . . . 10 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))))
12 onss 4409 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → 𝑥 ⊆ On)
13 tfri3.1 . . . . . . . . . . . . . . . . . . . . . 22 𝐹 = recs(𝐺)
14 tfri3.2 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
1513, 14tfri1 6262 . . . . . . . . . . . . . . . . . . . . 21 𝐹 Fn On
16 fvreseq 5524 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 Fn On ∧ 𝐹 Fn On) ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
1715, 16mpanl2 431 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)))
18 fveq2 5421 . . . . . . . . . . . . . . . . . . . 20 ((𝐵𝑥) = (𝐹𝑥) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
1917, 18syl6bir 163 . . . . . . . . . . . . . . . . . . 19 ((𝐵 Fn On ∧ 𝑥 ⊆ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2012, 19sylan2 284 . . . . . . . . . . . . . . . . . 18 ((𝐵 Fn On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2120ancoms 266 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2221imp 123 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2322adantr 274 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))
2413, 14tfri2 6263 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))
2524jctr 313 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
26 jcab 592 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))) ↔ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
2725, 26sylibr 133 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥)))))
28 eqeq12 2152 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑥) = (𝐺‘(𝐵𝑥)) ∧ (𝐹𝑥) = (𝐺‘(𝐹𝑥))) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
2927, 28syl6 33 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥)))))
3029imp 123 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3130adantl 275 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → ((𝐵𝑥) = (𝐹𝑥) ↔ (𝐺‘(𝐵𝑥)) = (𝐺‘(𝐹𝑥))))
3223, 31mpbird 166 . . . . . . . . . . . . . 14 ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) ∧ ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) ∧ 𝑥 ∈ On)) → (𝐵𝑥) = (𝐹𝑥))
3332exp43 369 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))))
3433com4t 85 . . . . . . . . . . . 12 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3534exp4a 363 . . . . . . . . . . 11 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))))
3635pm2.43d 50 . . . . . . . . . 10 ((𝑥 ∈ On → (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3711, 36syl 14 . . . . . . . . 9 (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3837com3l 81 . . . . . . . 8 (𝑥 ∈ On → (𝐵 Fn On → (∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥)) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥)))))
3938impd 252 . . . . . . 7 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦) → (𝐵𝑥) = (𝐹𝑥))))
4039a2d 26 . . . . . 6 (𝑥 ∈ On → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑦𝑥 (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
4110, 40syl5bi 151 . . . . 5 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑦) = (𝐹𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥))))
425, 9, 41tfis2f 4498 . . . 4 (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝐵𝑥) = (𝐹𝑥)))
4342com12 30 . . 3 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → (𝑥 ∈ On → (𝐵𝑥) = (𝐹𝑥)))
443, 43ralrimi 2503 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥))
45 eqfnfv 5518 . . . 4 ((𝐵 Fn On ∧ 𝐹 Fn On) → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4615, 45mpan2 421 . . 3 (𝐵 Fn On → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)))
4746biimpar 295 . 2 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐹𝑥)) → 𝐵 = 𝐹)
4844, 47syldan 280 1 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵𝑥) = (𝐺‘(𝐵𝑥))) → 𝐵 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  wss 3071  Oncon0 4285  cres 4541  Fun wfun 5117   Fn wfn 5118  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator