| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com24 | GIF version | ||
| Description: Commutation of antecedents. Swap 2nd and 4th. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| com24 | ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4t 85 | . 2 ⊢ (𝜒 → (𝜃 → (𝜑 → (𝜓 → 𝜏)))) |
| 3 | 2 | com13 80 | 1 ⊢ (𝜑 → (𝜃 → (𝜒 → (𝜓 → 𝜏)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com25 91 tfrlem9 6418 nnmordi 6615 fundmen 6912 fiintim 7043 elfzodifsumelfzo 10352 ssfzo12 10375 swrdswrdlem 11180 swrdswrd 11181 wrd2ind 11199 dvdsmodexp 12181 dvdsaddre2b 12227 infpnlem1 12757 grpinveu 13445 mulgass2 13895 lss1d 14220 cnpnei 14766 |
| Copyright terms: Public domain | W3C validator |