ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com24 GIF version

Theorem com24 87
Description: Commutation of antecedents. Swap 2nd and 4th. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com24 (𝜑 → (𝜃 → (𝜒 → (𝜓𝜏))))

Proof of Theorem com24
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4t 85 . 2 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
32com13 80 1 (𝜑 → (𝜃 → (𝜒 → (𝜓𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com25  91  tfrlem9  6418  nnmordi  6615  fundmen  6912  fiintim  7043  elfzodifsumelfzo  10352  ssfzo12  10375  swrdswrdlem  11180  swrdswrd  11181  wrd2ind  11199  dvdsmodexp  12181  dvdsaddre2b  12227  infpnlem1  12757  grpinveu  13445  mulgass2  13895  lss1d  14220  cnpnei  14766
  Copyright terms: Public domain W3C validator