ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ac GIF version

Definition df-ac 7384
Description: The expression CHOICE will be used as a readable shorthand for any form of the axiom of choice; all concrete forms are long, cryptic, have dummy variables, or all three, making it useful to have a short name. Similar to the Axiom of Choice (first form) of [Enderton] p. 49.

There are some decisions about how to write this definition especially around whether ax-setind 4628 is needed to show equivalence to other ways of stating choice, and about whether choice functions are available for nonempty sets or inhabited sets. (Contributed by Mario Carneiro, 22-Feb-2015.)

Assertion
Ref Expression
df-ac (CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
Distinct variable group:   𝑥,𝑓

Detailed syntax breakdown of Definition df-ac
StepHypRef Expression
1 wac 7383 . 2 wff CHOICE
2 vf . . . . . . 7 setvar 𝑓
32cv 1394 . . . . . 6 class 𝑓
4 vx . . . . . . 7 setvar 𝑥
54cv 1394 . . . . . 6 class 𝑥
63, 5wss 3197 . . . . 5 wff 𝑓𝑥
75cdm 4718 . . . . . 6 class dom 𝑥
83, 7wfn 5312 . . . . 5 wff 𝑓 Fn dom 𝑥
96, 8wa 104 . . . 4 wff (𝑓𝑥𝑓 Fn dom 𝑥)
109, 2wex 1538 . . 3 wff 𝑓(𝑓𝑥𝑓 Fn dom 𝑥)
1110, 4wal 1393 . 2 wff 𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥)
121, 11wb 105 1 wff (CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
Colors of variables: wff set class
This definition is referenced by:  acfun  7385
  Copyright terms: Public domain W3C validator