Step | Hyp | Ref
| Expression |
1 | | acfun.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | 1 | elexd 2743 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
3 | | abid2 2291 |
. . . . . 6
⊢ {𝑣 ∣ 𝑣 ∈ 𝑢} = 𝑢 |
4 | | vex 2733 |
. . . . . 6
⊢ 𝑢 ∈ V |
5 | 3, 4 | eqeltri 2243 |
. . . . 5
⊢ {𝑣 ∣ 𝑣 ∈ 𝑢} ∈ V |
6 | 5 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → {𝑣 ∣ 𝑣 ∈ 𝑢} ∈ V) |
7 | 2, 6 | opabex3d 6100 |
. . 3
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∈ V) |
8 | | acfun.ac |
. . . 4
⊢ (𝜑 →
CHOICE) |
9 | | df-ac 7183 |
. . . 4
⊢
(CHOICE ↔ ∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
10 | 8, 9 | sylib 121 |
. . 3
⊢ (𝜑 → ∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
11 | | sseq2 3171 |
. . . . . 6
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (𝑓 ⊆ 𝑦 ↔ 𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
12 | | dmeq 4811 |
. . . . . . 7
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → dom 𝑦 = dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
13 | 12 | fneq2d 5289 |
. . . . . 6
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (𝑓 Fn dom 𝑦 ↔ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
14 | 11, 13 | anbi12d 470 |
. . . . 5
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → ((𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) ↔ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
15 | 14 | exbidv 1818 |
. . . 4
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) ↔ ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
16 | 15 | spcgv 2817 |
. . 3
⊢
({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∈ V → (∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) → ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
17 | 7, 10, 16 | sylc 62 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
18 | | simprr 527 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
19 | | acfun.m |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) |
20 | | elequ2 2146 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑢)) |
21 | 20 | exbidv 1818 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (∃𝑤 𝑤 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ 𝑢)) |
22 | 21 | cbvralv 2696 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑥 ↔ ∀𝑢 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑢) |
23 | | elequ1 2145 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → (𝑤 ∈ 𝑢 ↔ 𝑣 ∈ 𝑢)) |
24 | 23 | cbvexv 1911 |
. . . . . . . . . . . 12
⊢
(∃𝑤 𝑤 ∈ 𝑢 ↔ ∃𝑣 𝑣 ∈ 𝑢) |
25 | 24 | ralbii 2476 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑢 ↔ ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
26 | 22, 25 | bitri 183 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑥 ↔ ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
27 | 19, 26 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
28 | | dmopab3 4824 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
𝐴 ∃𝑣 𝑣 ∈ 𝑢 ↔ dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} = 𝐴) |
29 | 27, 28 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} = 𝐴) |
30 | 29 | fneq2d 5289 |
. . . . . . 7
⊢ (𝜑 → (𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ 𝑓 Fn 𝐴)) |
31 | 30 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → (𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ 𝑓 Fn 𝐴)) |
32 | 18, 31 | mpbid 146 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → 𝑓 Fn 𝐴) |
33 | | simplrl 530 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
34 | | fnopfv 5626 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ 𝑓) |
35 | 32, 34 | sylan 281 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ 𝑓) |
36 | 33, 35 | sseldd 3148 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
37 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
38 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
39 | 38, 37 | fvex 5516 |
. . . . . . . . 9
⊢ (𝑓‘𝑥) ∈ V |
40 | | eleq1 2233 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
41 | | elequ2 2146 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑣 ∈ 𝑢 ↔ 𝑣 ∈ 𝑥)) |
42 | 40, 41 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢) ↔ (𝑥 ∈ 𝐴 ∧ 𝑣 ∈ 𝑥))) |
43 | | eleq1 2233 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑓‘𝑥) → (𝑣 ∈ 𝑥 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
44 | 43 | anbi2d 461 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑣 ∈ 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥))) |
45 | 37, 39, 42, 44 | opelopab 4256 |
. . . . . . . 8
⊢
(〈𝑥, (𝑓‘𝑥)〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥)) |
46 | 36, 45 | sylib 121 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥)) |
47 | 46 | simprd 113 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝑥) |
48 | 47 | ralrimiva 2543 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
49 | 32, 48 | jca 304 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
50 | 49 | ex 114 |
. . 3
⊢ (𝜑 → ((𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
51 | 50 | eximdv 1873 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
52 | 17, 51 | mpd 13 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |