| Step | Hyp | Ref
| Expression |
| 1 | | acfun.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | 1 | elexd 2776 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
| 3 | | abid2 2317 |
. . . . . 6
⊢ {𝑣 ∣ 𝑣 ∈ 𝑢} = 𝑢 |
| 4 | | vex 2766 |
. . . . . 6
⊢ 𝑢 ∈ V |
| 5 | 3, 4 | eqeltri 2269 |
. . . . 5
⊢ {𝑣 ∣ 𝑣 ∈ 𝑢} ∈ V |
| 6 | 5 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐴) → {𝑣 ∣ 𝑣 ∈ 𝑢} ∈ V) |
| 7 | 2, 6 | opabex3d 6187 |
. . 3
⊢ (𝜑 → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∈ V) |
| 8 | | acfun.ac |
. . . 4
⊢ (𝜑 →
CHOICE) |
| 9 | | df-ac 7289 |
. . . 4
⊢
(CHOICE ↔ ∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
| 10 | 8, 9 | sylib 122 |
. . 3
⊢ (𝜑 → ∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
| 11 | | sseq2 3208 |
. . . . . 6
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (𝑓 ⊆ 𝑦 ↔ 𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
| 12 | | dmeq 4867 |
. . . . . . 7
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → dom 𝑦 = dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
| 13 | 12 | fneq2d 5350 |
. . . . . 6
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (𝑓 Fn dom 𝑦 ↔ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
| 14 | 11, 13 | anbi12d 473 |
. . . . 5
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → ((𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) ↔ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
| 15 | 14 | exbidv 1839 |
. . . 4
⊢ (𝑦 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} → (∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) ↔ ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
| 16 | 15 | spcgv 2851 |
. . 3
⊢
({〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∈ V → (∀𝑦∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦) → ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}))) |
| 17 | 7, 10, 16 | sylc 62 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) |
| 18 | | simprr 531 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
| 19 | | acfun.m |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) |
| 20 | | elequ2 2172 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑢)) |
| 21 | 20 | exbidv 1839 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (∃𝑤 𝑤 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ 𝑢)) |
| 22 | 21 | cbvralv 2729 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑥 ↔ ∀𝑢 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑢) |
| 23 | | elequ1 2171 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑣 → (𝑤 ∈ 𝑢 ↔ 𝑣 ∈ 𝑢)) |
| 24 | 23 | cbvexv 1933 |
. . . . . . . . . . . 12
⊢
(∃𝑤 𝑤 ∈ 𝑢 ↔ ∃𝑣 𝑣 ∈ 𝑢) |
| 25 | 24 | ralbii 2503 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑢 ↔ ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
| 26 | 22, 25 | bitri 184 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∃𝑤 𝑤 ∈ 𝑥 ↔ ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
| 27 | 19, 26 | sylib 122 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∃𝑣 𝑣 ∈ 𝑢) |
| 28 | | dmopab3 4880 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
𝐴 ∃𝑣 𝑣 ∈ 𝑢 ↔ dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} = 𝐴) |
| 29 | 27, 28 | sylib 122 |
. . . . . . . 8
⊢ (𝜑 → dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} = 𝐴) |
| 30 | 29 | fneq2d 5350 |
. . . . . . 7
⊢ (𝜑 → (𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ 𝑓 Fn 𝐴)) |
| 31 | 30 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → (𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ 𝑓 Fn 𝐴)) |
| 32 | 18, 31 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → 𝑓 Fn 𝐴) |
| 33 | | simplrl 535 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
| 34 | | fnopfv 5695 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ 𝑓) |
| 35 | 32, 34 | sylan 283 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ 𝑓) |
| 36 | 33, 35 | sseldd 3185 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → 〈𝑥, (𝑓‘𝑥)〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) |
| 37 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 38 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 39 | 38, 37 | fvex 5581 |
. . . . . . . . 9
⊢ (𝑓‘𝑥) ∈ V |
| 40 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 41 | | elequ2 2172 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → (𝑣 ∈ 𝑢 ↔ 𝑣 ∈ 𝑥)) |
| 42 | 40, 41 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢) ↔ (𝑥 ∈ 𝐴 ∧ 𝑣 ∈ 𝑥))) |
| 43 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑓‘𝑥) → (𝑣 ∈ 𝑥 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
| 44 | 43 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝑥) → ((𝑥 ∈ 𝐴 ∧ 𝑣 ∈ 𝑥) ↔ (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥))) |
| 45 | 37, 39, 42, 44 | opelopab 4307 |
. . . . . . . 8
⊢
(〈𝑥, (𝑓‘𝑥)〉 ∈ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ↔ (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥)) |
| 46 | 36, 45 | sylib 122 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ (𝑓‘𝑥) ∈ 𝑥)) |
| 47 | 46 | simprd 114 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝑥) |
| 48 | 47 | ralrimiva 2570 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
| 49 | 32, 48 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)})) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| 50 | 49 | ex 115 |
. . 3
⊢ (𝜑 → ((𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
| 51 | 50 | eximdv 1894 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓 ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)} ∧ 𝑓 Fn dom {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝑢)}) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥))) |
| 52 | 17, 51 | mpd 13 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |