ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-apr GIF version

Definition df-apr 13369
Description: The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13374. (Contributed by Jim Kingdon, 13-Feb-2025.)
Assertion
Ref Expression
df-apr #r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))})
Distinct variable group:   π‘₯,𝑀,𝑦

Detailed syntax breakdown of Definition df-apr
StepHypRef Expression
1 capr 13368 . 2 class #r
2 vw . . 3 setvar 𝑀
3 cvv 2737 . . 3 class V
4 vx . . . . . . . 8 setvar π‘₯
54cv 1352 . . . . . . 7 class π‘₯
62cv 1352 . . . . . . . 8 class 𝑀
7 cbs 12461 . . . . . . . 8 class Base
86, 7cfv 5216 . . . . . . 7 class (Baseβ€˜π‘€)
95, 8wcel 2148 . . . . . 6 wff π‘₯ ∈ (Baseβ€˜π‘€)
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1352 . . . . . . 7 class 𝑦
1211, 8wcel 2148 . . . . . 6 wff 𝑦 ∈ (Baseβ€˜π‘€)
139, 12wa 104 . . . . 5 wff (π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€))
14 csg 12878 . . . . . . . 8 class -g
156, 14cfv 5216 . . . . . . 7 class (-gβ€˜π‘€)
165, 11, 15co 5874 . . . . . 6 class (π‘₯(-gβ€˜π‘€)𝑦)
17 cui 13254 . . . . . . 7 class Unit
186, 17cfv 5216 . . . . . 6 class (Unitβ€˜π‘€)
1916, 18wcel 2148 . . . . 5 wff (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€)
2013, 19wa 104 . . . 4 wff ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))
2120, 4, 10copab 4063 . . 3 class {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))}
222, 3, 21cmpt 4064 . 2 class (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))})
231, 22wceq 1353 1 wff #r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))})
Colors of variables: wff set class
This definition is referenced by:  aprval  13370  aprap  13374
  Copyright terms: Public domain W3C validator