ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-apr GIF version

Definition df-apr 13527
Description: The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13532. (Contributed by Jim Kingdon, 13-Feb-2025.)
Assertion
Ref Expression
df-apr #r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))})
Distinct variable group:   𝑥,𝑤,𝑦

Detailed syntax breakdown of Definition df-apr
StepHypRef Expression
1 capr 13526 . 2 class #r
2 vw . . 3 setvar 𝑤
3 cvv 2749 . . 3 class V
4 vx . . . . . . . 8 setvar 𝑥
54cv 1362 . . . . . . 7 class 𝑥
62cv 1362 . . . . . . . 8 class 𝑤
7 cbs 12476 . . . . . . . 8 class Base
86, 7cfv 5228 . . . . . . 7 class (Base‘𝑤)
95, 8wcel 2158 . . . . . 6 wff 𝑥 ∈ (Base‘𝑤)
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1362 . . . . . . 7 class 𝑦
1211, 8wcel 2158 . . . . . 6 wff 𝑦 ∈ (Base‘𝑤)
139, 12wa 104 . . . . 5 wff (𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤))
14 csg 12908 . . . . . . . 8 class -g
156, 14cfv 5228 . . . . . . 7 class (-g𝑤)
165, 11, 15co 5888 . . . . . 6 class (𝑥(-g𝑤)𝑦)
17 cui 13392 . . . . . . 7 class Unit
186, 17cfv 5228 . . . . . 6 class (Unit‘𝑤)
1916, 18wcel 2158 . . . . 5 wff (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤)
2013, 19wa 104 . . . 4 wff ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))
2120, 4, 10copab 4075 . . 3 class {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))}
222, 3, 21cmpt 4076 . 2 class (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))})
231, 22wceq 1363 1 wff #r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ (𝑥(-g𝑤)𝑦) ∈ (Unit‘𝑤))})
Colors of variables: wff set class
This definition is referenced by:  aprval  13528  aprap  13532
  Copyright terms: Public domain W3C validator