Step | Hyp | Ref
| Expression |
1 | | capr 13368 |
. 2
class
#r |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 2737 |
. . 3
class
V |
4 | | vx |
. . . . . . . 8
setvar π₯ |
5 | 4 | cv 1352 |
. . . . . . 7
class π₯ |
6 | 2 | cv 1352 |
. . . . . . . 8
class π€ |
7 | | cbs 12461 |
. . . . . . . 8
class
Base |
8 | 6, 7 | cfv 5216 |
. . . . . . 7
class
(Baseβπ€) |
9 | 5, 8 | wcel 2148 |
. . . . . 6
wff π₯ β (Baseβπ€) |
10 | | vy |
. . . . . . . 8
setvar π¦ |
11 | 10 | cv 1352 |
. . . . . . 7
class π¦ |
12 | 11, 8 | wcel 2148 |
. . . . . 6
wff π¦ β (Baseβπ€) |
13 | 9, 12 | wa 104 |
. . . . 5
wff (π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) |
14 | | csg 12878 |
. . . . . . . 8
class
-g |
15 | 6, 14 | cfv 5216 |
. . . . . . 7
class
(-gβπ€) |
16 | 5, 11, 15 | co 5874 |
. . . . . 6
class (π₯(-gβπ€)π¦) |
17 | | cui 13254 |
. . . . . . 7
class
Unit |
18 | 6, 17 | cfv 5216 |
. . . . . 6
class
(Unitβπ€) |
19 | 16, 18 | wcel 2148 |
. . . . 5
wff (π₯(-gβπ€)π¦) β (Unitβπ€) |
20 | 13, 19 | wa 104 |
. . . 4
wff ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) β§ (π₯(-gβπ€)π¦) β (Unitβπ€)) |
21 | 20, 4, 10 | copab 4063 |
. . 3
class
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) β§ (π₯(-gβπ€)π¦) β (Unitβπ€))} |
22 | 2, 3, 21 | cmpt 4064 |
. 2
class (π€ β V β¦ {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) β§ (π₯(-gβπ€)π¦) β (Unitβπ€))}) |
23 | 1, 22 | wceq 1353 |
1
wff
#r = (π€
β V β¦ {β¨π₯,
π¦β© β£ ((π₯ β (Baseβπ€) β§ π¦ β (Baseβπ€)) β§ (π₯(-gβπ€)π¦) β (Unitβπ€))}) |