ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-apr Unicode version

Definition df-apr 13369
Description: The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13374. (Contributed by Jim Kingdon, 13-Feb-2025.)
Assertion
Ref Expression
df-apr  |- #r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  w
)  /\  y  e.  ( Base `  w )
)  /\  ( x
( -g `  w ) y )  e.  (Unit `  w ) ) } )
Distinct variable group:    x, w, y

Detailed syntax breakdown of Definition df-apr
StepHypRef Expression
1 capr 13368 . 2  class #r
2 vw . . 3  setvar  w
3 cvv 2737 . . 3  class  _V
4 vx . . . . . . . 8  setvar  x
54cv 1352 . . . . . . 7  class  x
62cv 1352 . . . . . . . 8  class  w
7 cbs 12461 . . . . . . . 8  class  Base
86, 7cfv 5216 . . . . . . 7  class  ( Base `  w )
95, 8wcel 2148 . . . . . 6  wff  x  e.  ( Base `  w
)
10 vy . . . . . . . 8  setvar  y
1110cv 1352 . . . . . . 7  class  y
1211, 8wcel 2148 . . . . . 6  wff  y  e.  ( Base `  w
)
139, 12wa 104 . . . . 5  wff  ( x  e.  ( Base `  w
)  /\  y  e.  ( Base `  w )
)
14 csg 12878 . . . . . . . 8  class  -g
156, 14cfv 5216 . . . . . . 7  class  ( -g `  w )
165, 11, 15co 5874 . . . . . 6  class  ( x ( -g `  w
) y )
17 cui 13254 . . . . . . 7  class Unit
186, 17cfv 5216 . . . . . 6  class  (Unit `  w )
1916, 18wcel 2148 . . . . 5  wff  ( x ( -g `  w
) y )  e.  (Unit `  w )
2013, 19wa 104 . . . 4  wff  ( ( x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
x ( -g `  w
) y )  e.  (Unit `  w )
)
2120, 4, 10copab 4063 . . 3  class  { <. x ,  y >.  |  ( ( x  e.  (
Base `  w )  /\  y  e.  ( Base `  w ) )  /\  ( x (
-g `  w )
y )  e.  (Unit `  w ) ) }
222, 3, 21cmpt 4064 . 2  class  ( w  e.  _V  |->  { <. x ,  y >.  |  ( ( x  e.  (
Base `  w )  /\  y  e.  ( Base `  w ) )  /\  ( x (
-g `  w )
y )  e.  (Unit `  w ) ) } )
231, 22wceq 1353 1  wff #r  =  (
w  e.  _V  |->  {
<. x ,  y >.  |  ( ( x  e.  ( Base `  w
)  /\  y  e.  ( Base `  w )
)  /\  ( x
( -g `  w ) y )  e.  (Unit `  w ) ) } )
Colors of variables: wff set class
This definition is referenced by:  aprval  13370  aprap  13374
  Copyright terms: Public domain W3C validator