Step | Hyp | Ref
| Expression |
1 | | df-br 4006 |
. . 3
β’ (π # π β β¨π, πβ© β # ) |
2 | | aprval.ap |
. . . . . 6
β’ (π β # =
(#rβπ
)) |
3 | | df-apr 13376 |
. . . . . . 7
β’
#r = (π
β V β¦ {β¨π₯,
π¦β© β£ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ))}) |
4 | | fveq2 5517 |
. . . . . . . . . . 11
β’ (π = π
β (Baseβπ) = (Baseβπ
)) |
5 | 4 | eleq2d 2247 |
. . . . . . . . . 10
β’ (π = π
β (π₯ β (Baseβπ) β π₯ β (Baseβπ
))) |
6 | 4 | eleq2d 2247 |
. . . . . . . . . 10
β’ (π = π
β (π¦ β (Baseβπ) β π¦ β (Baseβπ
))) |
7 | 5, 6 | anbi12d 473 |
. . . . . . . . 9
β’ (π = π
β ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)))) |
8 | | fveq2 5517 |
. . . . . . . . . . 11
β’ (π = π
β (-gβπ) = (-gβπ
)) |
9 | 8 | oveqd 5894 |
. . . . . . . . . 10
β’ (π = π
β (π₯(-gβπ)π¦) = (π₯(-gβπ
)π¦)) |
10 | | fveq2 5517 |
. . . . . . . . . 10
β’ (π = π
β (Unitβπ) = (Unitβπ
)) |
11 | 9, 10 | eleq12d 2248 |
. . . . . . . . 9
β’ (π = π
β ((π₯(-gβπ)π¦) β (Unitβπ) β (π₯(-gβπ
)π¦) β (Unitβπ
))) |
12 | 7, 11 | anbi12d 473 |
. . . . . . . 8
β’ (π = π
β (((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ)) β ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
)))) |
13 | 12 | opabbidv 4071 |
. . . . . . 7
β’ (π = π
β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β§ (π₯(-gβπ)π¦) β (Unitβπ))} = {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))}) |
14 | | aprval.r |
. . . . . . . 8
β’ (π β π
β Ring) |
15 | 14 | elexd 2752 |
. . . . . . 7
β’ (π β π
β V) |
16 | | basfn 12522 |
. . . . . . . . . 10
β’ Base Fn
V |
17 | | funfvex 5534 |
. . . . . . . . . . 11
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
18 | 17 | funfni 5318 |
. . . . . . . . . 10
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
19 | 16, 15, 18 | sylancr 414 |
. . . . . . . . 9
β’ (π β (Baseβπ
) β V) |
20 | | xpexg 4742 |
. . . . . . . . 9
β’
(((Baseβπ
)
β V β§ (Baseβπ
) β V) β ((Baseβπ
) Γ (Baseβπ
)) β V) |
21 | 19, 19, 20 | syl2anc 411 |
. . . . . . . 8
β’ (π β ((Baseβπ
) Γ (Baseβπ
)) β V) |
22 | | opabssxp 4702 |
. . . . . . . . 9
β’
{β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β ((Baseβπ
) Γ (Baseβπ
)) |
23 | 22 | a1i 9 |
. . . . . . . 8
β’ (π β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β ((Baseβπ
) Γ (Baseβπ
))) |
24 | 21, 23 | ssexd 4145 |
. . . . . . 7
β’ (π β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β V) |
25 | 3, 13, 15, 24 | fvmptd3 5611 |
. . . . . 6
β’ (π β (#rβπ
) = {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))}) |
26 | 2, 25 | eqtrd 2210 |
. . . . 5
β’ (π β # = {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))}) |
27 | 26 | eleq2d 2247 |
. . . 4
β’ (π β (β¨π, πβ© β # β β¨π, πβ© β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))})) |
28 | | aprval.x |
. . . . . 6
β’ (π β π β π΅) |
29 | | aprval.b |
. . . . . 6
β’ (π β π΅ = (Baseβπ
)) |
30 | 28, 29 | eleqtrd 2256 |
. . . . 5
β’ (π β π β (Baseβπ
)) |
31 | | aprval.y |
. . . . . 6
β’ (π β π β π΅) |
32 | 31, 29 | eleqtrd 2256 |
. . . . 5
β’ (π β π β (Baseβπ
)) |
33 | | oveq12 5886 |
. . . . . . 7
β’ ((π₯ = π β§ π¦ = π) β (π₯(-gβπ
)π¦) = (π(-gβπ
)π)) |
34 | 33 | eleq1d 2246 |
. . . . . 6
β’ ((π₯ = π β§ π¦ = π) β ((π₯(-gβπ
)π¦) β (Unitβπ
) β (π(-gβπ
)π) β (Unitβπ
))) |
35 | 34 | opelopab2a 4267 |
. . . . 5
β’ ((π β (Baseβπ
) β§ π β (Baseβπ
)) β (β¨π, πβ© β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β (π(-gβπ
)π) β (Unitβπ
))) |
36 | 30, 32, 35 | syl2anc 411 |
. . . 4
β’ (π β (β¨π, πβ© β {β¨π₯, π¦β© β£ ((π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
)) β§ (π₯(-gβπ
)π¦) β (Unitβπ
))} β (π(-gβπ
)π) β (Unitβπ
))) |
37 | 27, 36 | bitrd 188 |
. . 3
β’ (π β (β¨π, πβ© β # β (π(-gβπ
)π) β (Unitβπ
))) |
38 | 1, 37 | bitrid 192 |
. 2
β’ (π β (π # π β (π(-gβπ
)π) β (Unitβπ
))) |
39 | | aprval.s |
. . . 4
β’ (π β β =
(-gβπ
)) |
40 | 39 | oveqd 5894 |
. . 3
β’ (π β (π β π) = (π(-gβπ
)π)) |
41 | | aprval.u |
. . 3
β’ (π β π = (Unitβπ
)) |
42 | 40, 41 | eleq12d 2248 |
. 2
β’ (π β ((π β π) β π β (π(-gβπ
)π) β (Unitβπ
))) |
43 | 38, 42 | bitr4d 191 |
1
β’ (π β (π # π β (π β π) β π)) |