Step | Hyp | Ref
| Expression |
1 | | df-br 4006 |
. . 3
⊢ (𝑋 # 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ # ) |
2 | | aprval.ap |
. . . . . 6
⊢ (𝜑 → # =
(#r‘𝑅)) |
3 | | df-apr 13377 |
. . . . . . 7
⊢
#r = (𝑟
∈ V ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))}) |
4 | | fveq2 5517 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
5 | 4 | eleq2d 2247 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅))) |
6 | 4 | eleq2d 2247 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅))) |
7 | 5, 6 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) |
8 | | fveq2 5517 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (-g‘𝑟) = (-g‘𝑅)) |
9 | 8 | oveqd 5895 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥(-g‘𝑟)𝑦) = (𝑥(-g‘𝑅)𝑦)) |
10 | | fveq2 5517 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) |
11 | 9, 10 | eleq12d 2248 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))) |
12 | 7, 11 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅)))) |
13 | 12 | opabbidv 4071 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
14 | | aprval.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | 14 | elexd 2752 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ V) |
16 | | basfn 12523 |
. . . . . . . . . 10
⊢ Base Fn
V |
17 | | funfvex 5534 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
18 | 17 | funfni 5318 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
19 | 16, 15, 18 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
20 | | xpexg 4742 |
. . . . . . . . 9
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
21 | 19, 19, 20 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
22 | | opabssxp 4702 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)) |
23 | 22 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))) |
24 | 21, 23 | ssexd 4145 |
. . . . . . 7
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V) |
25 | 3, 13, 15, 24 | fvmptd3 5612 |
. . . . . 6
⊢ (𝜑 → (#r‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
26 | 2, 25 | eqtrd 2210 |
. . . . 5
⊢ (𝜑 → # = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
27 | 26 | eleq2d 2247 |
. . . 4
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ # ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))})) |
28 | | aprval.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
29 | | aprval.b |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
30 | 28, 29 | eleqtrd 2256 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
31 | | aprval.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
32 | 31, 29 | eleqtrd 2256 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
33 | | oveq12 5887 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥(-g‘𝑅)𝑦) = (𝑋(-g‘𝑅)𝑌)) |
34 | 33 | eleq1d 2246 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅) ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
35 | 34 | opelopab2a 4267 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
36 | 30, 32, 35 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
37 | 27, 36 | bitrd 188 |
. . 3
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ # ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
38 | 1, 37 | bitrid 192 |
. 2
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
39 | | aprval.s |
. . . 4
⊢ (𝜑 → − =
(-g‘𝑅)) |
40 | 39 | oveqd 5895 |
. . 3
⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(-g‘𝑅)𝑌)) |
41 | | aprval.u |
. . 3
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
42 | 40, 41 | eleq12d 2248 |
. 2
⊢ (𝜑 → ((𝑋 − 𝑌) ∈ 𝑈 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
43 | 38, 42 | bitr4d 191 |
1
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 − 𝑌) ∈ 𝑈)) |