| Step | Hyp | Ref
| Expression |
| 1 | | df-br 4034 |
. . 3
⊢ (𝑋 # 𝑌 ↔ 〈𝑋, 𝑌〉 ∈ # ) |
| 2 | | aprval.ap |
. . . . . 6
⊢ (𝜑 → # =
(#r‘𝑅)) |
| 3 | | df-apr 13837 |
. . . . . . 7
⊢
#r = (𝑟
∈ V ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))}) |
| 4 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 5 | 4 | eleq2d 2266 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅))) |
| 6 | 4 | eleq2d 2266 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅))) |
| 7 | 5, 6 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) |
| 8 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (-g‘𝑟) = (-g‘𝑅)) |
| 9 | 8 | oveqd 5939 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥(-g‘𝑟)𝑦) = (𝑥(-g‘𝑅)𝑦)) |
| 10 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) |
| 11 | 9, 10 | eleq12d 2267 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))) |
| 12 | 7, 11 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅)))) |
| 13 | 12 | opabbidv 4099 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g‘𝑟)𝑦) ∈ (Unit‘𝑟))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
| 14 | | aprval.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | 14 | elexd 2776 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ V) |
| 16 | | basfn 12736 |
. . . . . . . . . 10
⊢ Base Fn
V |
| 17 | | funfvex 5575 |
. . . . . . . . . . 11
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 18 | 17 | funfni 5358 |
. . . . . . . . . 10
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 19 | 16, 15, 18 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 20 | | xpexg 4777 |
. . . . . . . . 9
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
| 21 | 19, 19, 20 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
| 22 | | opabssxp 4737 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)) |
| 23 | 22 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))) |
| 24 | 21, 23 | ssexd 4173 |
. . . . . . 7
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V) |
| 25 | 3, 13, 15, 24 | fvmptd3 5655 |
. . . . . 6
⊢ (𝜑 → (#r‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
| 26 | 2, 25 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → # = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))}) |
| 27 | 26 | eleq2d 2266 |
. . . 4
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ # ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))})) |
| 28 | | aprval.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 29 | | aprval.b |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 30 | 28, 29 | eleqtrd 2275 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 31 | | aprval.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 32 | 31, 29 | eleqtrd 2275 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
| 33 | | oveq12 5931 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥(-g‘𝑅)𝑦) = (𝑋(-g‘𝑅)𝑌)) |
| 34 | 33 | eleq1d 2265 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅) ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 35 | 34 | opelopab2a 4299 |
. . . . 5
⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 36 | 30, 32, 35 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g‘𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 37 | 27, 36 | bitrd 188 |
. . 3
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ # ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 38 | 1, 37 | bitrid 192 |
. 2
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 39 | | aprval.s |
. . . 4
⊢ (𝜑 → − =
(-g‘𝑅)) |
| 40 | 39 | oveqd 5939 |
. . 3
⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(-g‘𝑅)𝑌)) |
| 41 | | aprval.u |
. . 3
⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| 42 | 40, 41 | eleq12d 2267 |
. 2
⊢ (𝜑 → ((𝑋 − 𝑌) ∈ 𝑈 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 43 | 38, 42 | bitr4d 191 |
1
⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 − 𝑌) ∈ 𝑈)) |