ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval GIF version

Theorem aprval 13377
Description: Expand Definition df-apr 13376. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
aprval.ap (πœ‘ β†’ # = (#rβ€˜π‘…))
aprval.s (πœ‘ β†’ βˆ’ = (-gβ€˜π‘…))
aprval.u (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
aprval.r (πœ‘ β†’ 𝑅 ∈ Ring)
aprval.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
aprval.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
Assertion
Ref Expression
aprval (πœ‘ β†’ (𝑋 # π‘Œ ↔ (𝑋 βˆ’ π‘Œ) ∈ π‘ˆ))

Proof of Theorem aprval
Dummy variables π‘Ÿ π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4006 . . 3 (𝑋 # π‘Œ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ # )
2 aprval.ap . . . . . 6 (πœ‘ β†’ # = (#rβ€˜π‘…))
3 df-apr 13376 . . . . . . 7 #r = (π‘Ÿ ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ∧ 𝑦 ∈ (Baseβ€˜π‘Ÿ)) ∧ (π‘₯(-gβ€˜π‘Ÿ)𝑦) ∈ (Unitβ€˜π‘Ÿ))})
4 fveq2 5517 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
54eleq2d 2247 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ) ↔ π‘₯ ∈ (Baseβ€˜π‘…)))
64eleq2d 2247 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (𝑦 ∈ (Baseβ€˜π‘Ÿ) ↔ 𝑦 ∈ (Baseβ€˜π‘…)))
75, 6anbi12d 473 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ∧ 𝑦 ∈ (Baseβ€˜π‘Ÿ)) ↔ (π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…))))
8 fveq2 5517 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (-gβ€˜π‘Ÿ) = (-gβ€˜π‘…))
98oveqd 5894 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘₯(-gβ€˜π‘Ÿ)𝑦) = (π‘₯(-gβ€˜π‘…)𝑦))
10 fveq2 5517 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
119, 10eleq12d 2248 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ((π‘₯(-gβ€˜π‘Ÿ)𝑦) ∈ (Unitβ€˜π‘Ÿ) ↔ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…)))
127, 11anbi12d 473 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ∧ 𝑦 ∈ (Baseβ€˜π‘Ÿ)) ∧ (π‘₯(-gβ€˜π‘Ÿ)𝑦) ∈ (Unitβ€˜π‘Ÿ)) ↔ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))))
1312opabbidv 4071 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘Ÿ) ∧ 𝑦 ∈ (Baseβ€˜π‘Ÿ)) ∧ (π‘₯(-gβ€˜π‘Ÿ)𝑦) ∈ (Unitβ€˜π‘Ÿ))} = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))})
14 aprval.r . . . . . . . 8 (πœ‘ β†’ 𝑅 ∈ Ring)
1514elexd 2752 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ V)
16 basfn 12522 . . . . . . . . . 10 Base Fn V
17 funfvex 5534 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) β†’ (Baseβ€˜π‘…) ∈ V)
1817funfni 5318 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π‘…) ∈ V)
1916, 15, 18sylancr 414 . . . . . . . . 9 (πœ‘ β†’ (Baseβ€˜π‘…) ∈ V)
20 xpexg 4742 . . . . . . . . 9 (((Baseβ€˜π‘…) ∈ V ∧ (Baseβ€˜π‘…) ∈ V) β†’ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)) ∈ V)
2119, 19, 20syl2anc 411 . . . . . . . 8 (πœ‘ β†’ ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)) ∈ V)
22 opabssxp 4702 . . . . . . . . 9 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))} βŠ† ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…))
2322a1i 9 . . . . . . . 8 (πœ‘ β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))} βŠ† ((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘…)))
2421, 23ssexd 4145 . . . . . . 7 (πœ‘ β†’ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))} ∈ V)
253, 13, 15, 24fvmptd3 5611 . . . . . 6 (πœ‘ β†’ (#rβ€˜π‘…) = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))})
262, 25eqtrd 2210 . . . . 5 (πœ‘ β†’ # = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))})
2726eleq2d 2247 . . . 4 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ # ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))}))
28 aprval.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝐡)
29 aprval.b . . . . . 6 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
3028, 29eleqtrd 2256 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜π‘…))
31 aprval.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝐡)
3231, 29eleqtrd 2256 . . . . 5 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜π‘…))
33 oveq12 5886 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯(-gβ€˜π‘…)𝑦) = (𝑋(-gβ€˜π‘…)π‘Œ))
3433eleq1d 2246 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ((π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…) ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
3534opelopab2a 4267 . . . . 5 ((𝑋 ∈ (Baseβ€˜π‘…) ∧ π‘Œ ∈ (Baseβ€˜π‘…)) β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))} ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
3630, 32, 35syl2anc 411 . . . 4 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘…) ∧ 𝑦 ∈ (Baseβ€˜π‘…)) ∧ (π‘₯(-gβ€˜π‘…)𝑦) ∈ (Unitβ€˜π‘…))} ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
3727, 36bitrd 188 . . 3 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ # ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
381, 37bitrid 192 . 2 (πœ‘ β†’ (𝑋 # π‘Œ ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
39 aprval.s . . . 4 (πœ‘ β†’ βˆ’ = (-gβ€˜π‘…))
4039oveqd 5894 . . 3 (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) = (𝑋(-gβ€˜π‘…)π‘Œ))
41 aprval.u . . 3 (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))
4240, 41eleq12d 2248 . 2 (πœ‘ β†’ ((𝑋 βˆ’ π‘Œ) ∈ π‘ˆ ↔ (𝑋(-gβ€˜π‘…)π‘Œ) ∈ (Unitβ€˜π‘…)))
4338, 42bitr4d 191 1 (πœ‘ β†’ (𝑋 # π‘Œ ↔ (𝑋 βˆ’ π‘Œ) ∈ π‘ˆ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  Vcvv 2739   βŠ† wss 3131  βŸ¨cop 3597   class class class wbr 4005  {copab 4065   Γ— cxp 4626   Fn wfn 5213  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  -gcsg 12884  Ringcrg 13184  Unitcui 13261  #rcapr 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-apr 13376
This theorem is referenced by:  aprirr  13378  aprsym  13379  aprcotr  13380
  Copyright terms: Public domain W3C validator