ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval GIF version

Theorem aprval 13378
Description: Expand Definition df-apr 13377. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b (𝜑𝐵 = (Base‘𝑅))
aprval.ap (𝜑# = (#r𝑅))
aprval.s (𝜑 = (-g𝑅))
aprval.u (𝜑𝑈 = (Unit‘𝑅))
aprval.r (𝜑𝑅 ∈ Ring)
aprval.x (𝜑𝑋𝐵)
aprval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
aprval (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))

Proof of Theorem aprval
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4006 . . 3 (𝑋 # 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ # )
2 aprval.ap . . . . . 6 (𝜑# = (#r𝑅))
3 df-apr 13377 . . . . . . 7 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
4 fveq2 5517 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54eleq2d 2247 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
64eleq2d 2247 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
75, 6anbi12d 473 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
8 fveq2 5517 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
98oveqd 5895 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
10 fveq2 5517 . . . . . . . . . 10 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
119, 10eleq12d 2248 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
127, 11anbi12d 473 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1312opabbidv 4071 . . . . . . 7 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
14 aprval.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
1514elexd 2752 . . . . . . 7 (𝜑𝑅 ∈ V)
16 basfn 12523 . . . . . . . . . 10 Base Fn V
17 funfvex 5534 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1817funfni 5318 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1916, 15, 18sylancr 414 . . . . . . . . 9 (𝜑 → (Base‘𝑅) ∈ V)
20 xpexg 4742 . . . . . . . . 9 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
2119, 19, 20syl2anc 411 . . . . . . . 8 (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
22 opabssxp 4702 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2322a1i 9 . . . . . . . 8 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2421, 23ssexd 4145 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
253, 13, 15, 24fvmptd3 5612 . . . . . 6 (𝜑 → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
262, 25eqtrd 2210 . . . . 5 (𝜑# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2726eleq2d 2247 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))}))
28 aprval.x . . . . . 6 (𝜑𝑋𝐵)
29 aprval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
3028, 29eleqtrd 2256 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑅))
31 aprval.y . . . . . 6 (𝜑𝑌𝐵)
3231, 29eleqtrd 2256 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑅))
33 oveq12 5887 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥(-g𝑅)𝑦) = (𝑋(-g𝑅)𝑌))
3433eleq1d 2246 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅) ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3534opelopab2a 4267 . . . . 5 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3630, 32, 35syl2anc 411 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3727, 36bitrd 188 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
381, 37bitrid 192 . 2 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
39 aprval.s . . . 4 (𝜑 = (-g𝑅))
4039oveqd 5895 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(-g𝑅)𝑌))
41 aprval.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
4240, 41eleq12d 2248 . 2 (𝜑 → ((𝑋 𝑌) ∈ 𝑈 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
4338, 42bitr4d 191 1 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131  cop 3597   class class class wbr 4005  {copab 4065   × cxp 4626   Fn wfn 5213  cfv 5218  (class class class)co 5878  Basecbs 12465  -gcsg 12885  Ringcrg 13185  Unitcui 13262  #rcapr 13376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5881  df-inn 8923  df-ndx 12468  df-slot 12469  df-base 12471  df-apr 13377
This theorem is referenced by:  aprirr  13379  aprsym  13380  aprcotr  13381
  Copyright terms: Public domain W3C validator