ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval GIF version

Theorem aprval 14254
Description: Expand Definition df-apr 14253. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b (𝜑𝐵 = (Base‘𝑅))
aprval.ap (𝜑# = (#r𝑅))
aprval.s (𝜑 = (-g𝑅))
aprval.u (𝜑𝑈 = (Unit‘𝑅))
aprval.r (𝜑𝑅 ∈ Ring)
aprval.x (𝜑𝑋𝐵)
aprval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
aprval (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))

Proof of Theorem aprval
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4084 . . 3 (𝑋 # 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ # )
2 aprval.ap . . . . . 6 (𝜑# = (#r𝑅))
3 df-apr 14253 . . . . . . 7 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
4 fveq2 5629 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54eleq2d 2299 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
64eleq2d 2299 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
75, 6anbi12d 473 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
8 fveq2 5629 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
98oveqd 6024 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
10 fveq2 5629 . . . . . . . . . 10 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
119, 10eleq12d 2300 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
127, 11anbi12d 473 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1312opabbidv 4150 . . . . . . 7 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
14 aprval.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
1514elexd 2813 . . . . . . 7 (𝜑𝑅 ∈ V)
16 basfn 13099 . . . . . . . . . 10 Base Fn V
17 funfvex 5646 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1817funfni 5423 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1916, 15, 18sylancr 414 . . . . . . . . 9 (𝜑 → (Base‘𝑅) ∈ V)
20 xpexg 4833 . . . . . . . . 9 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
2119, 19, 20syl2anc 411 . . . . . . . 8 (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
22 opabssxp 4793 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2322a1i 9 . . . . . . . 8 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2421, 23ssexd 4224 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
253, 13, 15, 24fvmptd3 5730 . . . . . 6 (𝜑 → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
262, 25eqtrd 2262 . . . . 5 (𝜑# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2726eleq2d 2299 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))}))
28 aprval.x . . . . . 6 (𝜑𝑋𝐵)
29 aprval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
3028, 29eleqtrd 2308 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑅))
31 aprval.y . . . . . 6 (𝜑𝑌𝐵)
3231, 29eleqtrd 2308 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑅))
33 oveq12 6016 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥(-g𝑅)𝑦) = (𝑋(-g𝑅)𝑌))
3433eleq1d 2298 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅) ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3534opelopab2a 4353 . . . . 5 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3630, 32, 35syl2anc 411 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3727, 36bitrd 188 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
381, 37bitrid 192 . 2 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
39 aprval.s . . . 4 (𝜑 = (-g𝑅))
4039oveqd 6024 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(-g𝑅)𝑌))
41 aprval.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
4240, 41eleq12d 2300 . 2 (𝜑 → ((𝑋 𝑌) ∈ 𝑈 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
4338, 42bitr4d 191 1 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cop 3669   class class class wbr 4083  {copab 4144   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  Basecbs 13040  -gcsg 13543  Ringcrg 13967  Unitcui 14058  #rcapr 14252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-apr 14253
This theorem is referenced by:  aprirr  14255  aprsym  14256  aprcotr  14257
  Copyright terms: Public domain W3C validator