ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aprval GIF version

Theorem aprval 13914
Description: Expand Definition df-apr 13913. (Contributed by Jim Kingdon, 17-Feb-2025.)
Hypotheses
Ref Expression
aprval.b (𝜑𝐵 = (Base‘𝑅))
aprval.ap (𝜑# = (#r𝑅))
aprval.s (𝜑 = (-g𝑅))
aprval.u (𝜑𝑈 = (Unit‘𝑅))
aprval.r (𝜑𝑅 ∈ Ring)
aprval.x (𝜑𝑋𝐵)
aprval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
aprval (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))

Proof of Theorem aprval
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4035 . . 3 (𝑋 # 𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ # )
2 aprval.ap . . . . . 6 (𝜑# = (#r𝑅))
3 df-apr 13913 . . . . . . 7 #r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))})
4 fveq2 5561 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
54eleq2d 2266 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
64eleq2d 2266 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑦 ∈ (Base‘𝑟) ↔ 𝑦 ∈ (Base‘𝑅)))
75, 6anbi12d 473 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
8 fveq2 5561 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g𝑟) = (-g𝑅))
98oveqd 5942 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(-g𝑟)𝑦) = (𝑥(-g𝑅)𝑦))
10 fveq2 5561 . . . . . . . . . 10 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
119, 10eleq12d 2267 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟) ↔ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅)))
127, 11anbi12d 473 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟)) ↔ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))))
1312opabbidv 4100 . . . . . . 7 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑟) ∧ 𝑦 ∈ (Base‘𝑟)) ∧ (𝑥(-g𝑟)𝑦) ∈ (Unit‘𝑟))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
14 aprval.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
1514elexd 2776 . . . . . . 7 (𝜑𝑅 ∈ V)
16 basfn 12761 . . . . . . . . . 10 Base Fn V
17 funfvex 5578 . . . . . . . . . . 11 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1817funfni 5361 . . . . . . . . . 10 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1916, 15, 18sylancr 414 . . . . . . . . 9 (𝜑 → (Base‘𝑅) ∈ V)
20 xpexg 4778 . . . . . . . . 9 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
2119, 19, 20syl2anc 411 . . . . . . . 8 (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
22 opabssxp 4738 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅))
2322a1i 9 . . . . . . . 8 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
2421, 23ssexd 4174 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ∈ V)
253, 13, 15, 24fvmptd3 5658 . . . . . 6 (𝜑 → (#r𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
262, 25eqtrd 2229 . . . . 5 (𝜑# = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))})
2726eleq2d 2266 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))}))
28 aprval.x . . . . . 6 (𝜑𝑋𝐵)
29 aprval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
3028, 29eleqtrd 2275 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑅))
31 aprval.y . . . . . 6 (𝜑𝑌𝐵)
3231, 29eleqtrd 2275 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑅))
33 oveq12 5934 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥(-g𝑅)𝑦) = (𝑋(-g𝑅)𝑌))
3433eleq1d 2265 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅) ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3534opelopab2a 4300 . . . . 5 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3630, 32, 35syl2anc 411 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(-g𝑅)𝑦) ∈ (Unit‘𝑅))} ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
3727, 36bitrd 188 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ # ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
381, 37bitrid 192 . 2 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
39 aprval.s . . . 4 (𝜑 = (-g𝑅))
4039oveqd 5942 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(-g𝑅)𝑌))
41 aprval.u . . 3 (𝜑𝑈 = (Unit‘𝑅))
4240, 41eleq12d 2267 . 2 (𝜑 → ((𝑋 𝑌) ∈ 𝑈 ↔ (𝑋(-g𝑅)𝑌) ∈ (Unit‘𝑅)))
4338, 42bitr4d 191 1 (𝜑 → (𝑋 # 𝑌 ↔ (𝑋 𝑌) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cop 3626   class class class wbr 4034  {copab 4094   × cxp 4662   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  -gcsg 13204  Ringcrg 13628  Unitcui 13719  #rcapr 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-apr 13913
This theorem is referenced by:  aprirr  13915  aprsym  13916  aprcotr  13917
  Copyright terms: Public domain W3C validator