Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-bc | GIF version |
Description: Define the binomial
coefficient operation. For example,
(5C3) = 10 (ex-bc 13610).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
df-bc | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbc 10660 | . 2 class C | |
2 | vn | . . 3 setvar 𝑛 | |
3 | vk | . . 3 setvar 𝑘 | |
4 | cn0 9114 | . . 3 class ℕ0 | |
5 | cz 9191 | . . 3 class ℤ | |
6 | 3 | cv 1342 | . . . . 5 class 𝑘 |
7 | cc0 7753 | . . . . . 6 class 0 | |
8 | 2 | cv 1342 | . . . . . 6 class 𝑛 |
9 | cfz 9944 | . . . . . 6 class ... | |
10 | 7, 8, 9 | co 5842 | . . . . 5 class (0...𝑛) |
11 | 6, 10 | wcel 2136 | . . . 4 wff 𝑘 ∈ (0...𝑛) |
12 | cfa 10638 | . . . . . 6 class ! | |
13 | 8, 12 | cfv 5188 | . . . . 5 class (!‘𝑛) |
14 | cmin 8069 | . . . . . . . 8 class − | |
15 | 8, 6, 14 | co 5842 | . . . . . . 7 class (𝑛 − 𝑘) |
16 | 15, 12 | cfv 5188 | . . . . . 6 class (!‘(𝑛 − 𝑘)) |
17 | 6, 12 | cfv 5188 | . . . . . 6 class (!‘𝑘) |
18 | cmul 7758 | . . . . . 6 class · | |
19 | 16, 17, 18 | co 5842 | . . . . 5 class ((!‘(𝑛 − 𝑘)) · (!‘𝑘)) |
20 | cdiv 8568 | . . . . 5 class / | |
21 | 13, 19, 20 | co 5842 | . . . 4 class ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))) |
22 | 11, 21, 7 | cif 3520 | . . 3 class if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0) |
23 | 2, 3, 4, 5, 22 | cmpo 5844 | . 2 class (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
24 | 1, 23 | wceq 1343 | 1 wff C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
Colors of variables: wff set class |
This definition is referenced by: bcval 10662 |
Copyright terms: Public domain | W3C validator |