Theorem List for Intuitionistic Logic Explorer - 10701-10800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | fihasheqf1oi 10701 |
The size of two finite sets is equal if there is a bijection mapping one
of the sets onto the other. (Contributed by Jim Kingdon,
21-Feb-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
|
Theorem | fihashf1rn 10702 |
The size of a finite set which is a one-to-one function is equal to the
size of the function's range. (Contributed by Jim Kingdon,
21-Feb-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
|
Theorem | fihasheqf1od 10703 |
The size of two finite sets is equal if there is a bijection mapping one
of the sets onto the other. (Contributed by Jim Kingdon,
21-Feb-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
|
Theorem | fz1eqb 10704 |
Two possibly-empty 1-based finite sets of sequential integers are equal
iff their endpoints are equal. (Contributed by Paul Chapman,
22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
|
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)
→ ((1...𝑀) =
(1...𝑁) ↔ 𝑀 = 𝑁)) |
|
Theorem | filtinf 10705 |
The size of an infinite set is greater than the size of a finite set.
(Contributed by Jim Kingdon, 21-Feb-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵)) |
|
Theorem | isfinite4im 10706 |
A finite set is equinumerous to the range of integers from one up to the
hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
|
⊢ (𝐴 ∈ Fin →
(1...(♯‘𝐴))
≈ 𝐴) |
|
Theorem | fihasheq0 10707 |
Two ways of saying a finite set is empty. (Contributed by Paul Chapman,
26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized
by Jim Kingdon, 23-Feb-2022.)
|
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
|
Theorem | fihashneq0 10708 |
Two ways of saying a finite set is not empty. Also, "A is inhabited"
would be equivalent by fin0 6851. (Contributed by Alexander van der Vekens,
23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
|
⊢ (𝐴 ∈ Fin → (0 <
(♯‘𝐴) ↔
𝐴 ≠
∅)) |
|
Theorem | hashnncl 10709 |
Positive natural closure of the hash function. (Contributed by Mario
Carneiro, 16-Jan-2015.)
|
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠
∅)) |
|
Theorem | hash0 10710 |
The empty set has size zero. (Contributed by Mario Carneiro,
8-Jul-2014.)
|
⊢ (♯‘∅) = 0 |
|
Theorem | hashsng 10711 |
The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.)
(Proof shortened by Mario Carneiro, 13-Feb-2013.)
|
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) |
|
Theorem | fihashen1 10712 |
A finite set has size 1 if and only if it is equinumerous to the ordinal
1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon,
23-Feb-2022.)
|
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) |
|
Theorem | fihashfn 10713 |
A function on a finite set is equinumerous to its domain. (Contributed by
Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon,
24-Feb-2022.)
|
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴)) |
|
Theorem | fseq1hash 10714 |
The value of the size function on a finite 1-based sequence. (Contributed
by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro,
12-Mar-2015.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) |
|
Theorem | omgadd 10715 |
Mapping ordinal addition to integer addition. (Contributed by Jim
Kingdon, 24-Feb-2022.)
|
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) |
|
Theorem | fihashdom 10716 |
Dominance relation for the size function. (Contributed by Jim Kingdon,
24-Feb-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
|
Theorem | hashunlem 10717 |
Lemma for hashun 10718. Ordinal size of the union. (Contributed
by Jim
Kingdon, 25-Feb-2022.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝐴 ≈ 𝑁)
& ⊢ (𝜑 → 𝐵 ≈ 𝑀) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) |
|
Theorem | hashun 10718 |
The size of the union of disjoint finite sets is the sum of their sizes.
(Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro,
15-Sep-2013.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
|
Theorem | 1elfz0hash 10719 |
1 is an element of the finite set of sequential nonnegative integers
bounded by the size of a nonempty finite set. (Contributed by AV,
9-May-2020.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈
(0...(♯‘𝐴))) |
|
Theorem | hashunsng 10720 |
The size of the union of a finite set with a disjoint singleton is one
more than the size of the set. (Contributed by Paul Chapman,
30-Nov-2012.)
|
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) |
|
Theorem | hashprg 10721 |
The size of an unordered pair. (Contributed by Mario Carneiro,
27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV,
18-Sep-2021.)
|
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
|
Theorem | prhash2ex 10722 |
There is (at least) one set with two different elements: the unordered
pair containing 0 and 1.
In contrast to pr0hash2ex 10728, numbers
are used instead of sets because their representation is shorter (and more
comprehensive). (Contributed by AV, 29-Jan-2020.)
|
⊢ (♯‘{0, 1}) = 2 |
|
Theorem | hashp1i 10723 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴
& ⊢ (♯‘𝐴) = 𝑀
& ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 |
|
Theorem | hash1 10724 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
⊢ (♯‘1o) =
1 |
|
Theorem | hash2 10725 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
⊢ (♯‘2o) =
2 |
|
Theorem | hash3 10726 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
⊢ (♯‘3o) =
3 |
|
Theorem | hash4 10727 |
Size of a natural number ordinal. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
⊢ (♯‘4o) =
4 |
|
Theorem | pr0hash2ex 10728 |
There is (at least) one set with two different elements: the unordered
pair containing the empty set and the singleton containing the empty set.
(Contributed by AV, 29-Jan-2020.)
|
⊢ (♯‘{∅, {∅}}) =
2 |
|
Theorem | fihashss 10729 |
The size of a subset is less than or equal to the size of its superset.
(Contributed by Alexander van der Vekens, 14-Jul-2018.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) |
|
Theorem | fiprsshashgt1 10730 |
The size of a superset of a proper unordered pair is greater than 1.
(Contributed by AV, 6-Feb-2021.)
|
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
|
Theorem | fihashssdif 10731 |
The size of the difference of a finite set and a finite subset is the
set's size minus the subset's. (Contributed by Jim Kingdon,
31-May-2022.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
|
Theorem | hashdifsn 10732 |
The size of the difference of a finite set and a singleton subset is the
set's size minus 1. (Contributed by Alexander van der Vekens,
6-Jan-2018.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) |
|
Theorem | hashdifpr 10733 |
The size of the difference of a finite set and a proper ordered pair
subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
|
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) |
|
Theorem | hashfz 10734 |
Value of the numeric cardinality of a nonempty integer range.
(Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario
Carneiro, 15-Apr-2015.)
|
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) |
|
Theorem | hashfzo 10735 |
Cardinality of a half-open set of integers. (Contributed by Stefan
O'Rear, 15-Aug-2015.)
|
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
|
Theorem | hashfzo0 10736 |
Cardinality of a half-open set of integers based at zero. (Contributed by
Stefan O'Rear, 15-Aug-2015.)
|
⊢ (𝐵 ∈ ℕ0 →
(♯‘(0..^𝐵)) =
𝐵) |
|
Theorem | hashfzp1 10737 |
Value of the numeric cardinality of a (possibly empty) integer range.
(Contributed by AV, 19-Jun-2021.)
|
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
|
Theorem | hashfz0 10738 |
Value of the numeric cardinality of a nonempty range of nonnegative
integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
|
⊢ (𝐵 ∈ ℕ0 →
(♯‘(0...𝐵)) =
(𝐵 + 1)) |
|
Theorem | hashxp 10739 |
The size of the Cartesian product of two finite sets is the product of
their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) |
|
Theorem | fimaxq 10740* |
A finite set of rational numbers has a maximum. (Contributed by Jim
Kingdon, 6-Sep-2022.)
|
⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | fiubm 10741* |
Lemma for fiubz 10742 and fiubnn 10743. A general form of those theorems.
(Contributed by Jim Kingdon, 29-Oct-2024.)
|
⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ (𝜑 → 𝐵 ⊆ ℚ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵)
& ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | fiubz 10742* |
A finite set of integers has an upper bound which is an integer.
(Contributed by Jim Kingdon, 29-Oct-2024.)
|
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | fiubnn 10743* |
A finite set of natural numbers has an upper bound which is a a natural
number. (Contributed by Jim Kingdon, 29-Oct-2024.)
|
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | resunimafz0 10744 |
The union of a restriction by an image over an open range of nonnegative
integers and a singleton of an ordered pair is a restriction by an image
over an interval of nonnegative integers. (Contributed by Mario
Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
|
⊢ (𝜑 → Fun 𝐼)
& ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
& ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹)))
⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
|
Theorem | fnfz0hash 10745 |
The size of a function on a finite set of sequential nonnegative integers.
(Contributed by Alexander van der Vekens, 25-Jun-2018.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) |
|
Theorem | ffz0hash 10746 |
The size of a function on a finite set of sequential nonnegative integers
equals the upper bound of the sequence increased by 1. (Contributed by
Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV,
11-Apr-2021.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) |
|
Theorem | ffzo0hash 10747 |
The size of a function on a half-open range of nonnegative integers.
(Contributed by Alexander van der Vekens, 25-Mar-2018.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) |
|
Theorem | fnfzo0hash 10748 |
The size of a function on a half-open range of nonnegative integers equals
the upper bound of this range. (Contributed by Alexander van der Vekens,
26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
|
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) |
|
Theorem | hashfacen 10749* |
The number of bijections between two sets is a cardinal invariant.
(Contributed by Mario Carneiro, 21-Jan-2015.)
|
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
|
Theorem | leisorel 10750 |
Version of isorel 5776 for strictly increasing functions on the
reals.
(Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro,
9-Sep-2015.)
|
⊢ ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*)
∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ≤ 𝐷 ↔ (𝐹‘𝐶) ≤ (𝐹‘𝐷))) |
|
Theorem | zfz1isolemsplit 10751 |
Lemma for zfz1iso 10754. Removing one element from an integer
range.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) ⇒ ⊢ (𝜑 → (1...(♯‘𝑋)) =
((1...(♯‘(𝑋
∖ {𝑀}))) ∪
{(♯‘𝑋)})) |
|
Theorem | zfz1isolemiso 10752* |
Lemma for zfz1iso 10754. Adding one element to the order
isomorphism.
(Contributed by Jim Kingdon, 8-Sep-2022.)
|
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑀 ∈ 𝑋)
& ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀)
& ⊢ (𝜑 → 𝐺 Isom < , <
((1...(♯‘(𝑋
∖ {𝑀}))), (𝑋 ∖ {𝑀}))) & ⊢ (𝜑 → 𝐴 ∈ (1...(♯‘𝑋))) & ⊢ (𝜑 → 𝐵 ∈ (1...(♯‘𝑋)))
⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐴) < ((𝐺 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝐵))) |
|
Theorem | zfz1isolem1 10753* |
Lemma for zfz1iso 10754. Existence of an order isomorphism given
the
existence of shorter isomorphisms. (Contributed by Jim Kingdon,
7-Sep-2022.)
|
⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦))) & ⊢ (𝜑 → 𝑋 ⊆ ℤ) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑋 ≈ suc 𝐾)
& ⊢ (𝜑 → 𝑀 ∈ 𝑋)
& ⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) |
|
Theorem | zfz1iso 10754* |
A finite set of integers has an order isomorphism to a one-based finite
sequence. (Contributed by Jim Kingdon, 3-Sep-2022.)
|
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
|
Theorem | seq3coll 10755* |
The function 𝐹 contains a sparse set of nonzero
values to be summed.
The function 𝐺 is an order isomorphism from the set
of nonzero
values of 𝐹 to a 1-based finite sequence, and
𝐻
collects these
nonzero values together. Under these conditions, the sum over the
values in 𝐻 yields the same result as the sum
over the original set
𝐹. (Contributed by Mario Carneiro,
2-Apr-2014.) (Revised by Jim
Kingdon, 9-Apr-2023.)
|
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘)
& ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
& ⊢ (𝜑 → 𝑍 ∈ 𝑆)
& ⊢ (𝜑 → 𝐺 Isom < , <
((1...(♯‘𝐴)),
𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (1...(♯‘𝐴))) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐻‘𝑘) ∈ 𝑆)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍)
& ⊢ ((𝜑 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |
|
4.7 Elementary real and complex
functions
|
|
4.7.1 The "shift" operation
|
|
Syntax | cshi 10756 |
Extend class notation with function shifter.
|
class shift |
|
Definition | df-shft 10757* |
Define a function shifter. This operation offsets the value argument of
a function (ordinarily on a subset of ℂ)
and produces a new
function on ℂ. See shftval 10767 for its value. (Contributed by NM,
20-Jul-2005.)
|
⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
|
Theorem | shftlem 10758* |
Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario
Carneiro, 3-Nov-2013.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) |
|
Theorem | shftuz 10759* |
A shift of the upper integers. (Contributed by Mario Carneiro,
5-Nov-2013.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈
(ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
|
Theorem | shftfvalg 10760* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
|
Theorem | ovshftex 10761 |
Existence of the result of applying shift. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V) |
|
Theorem | shftfibg 10762 |
Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon,
15-Aug-2021.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
|
Theorem | shftfval 10763* |
The value of the sequence shifter operation is a function on ℂ.
𝐴 is ordinarily an integer.
(Contributed by NM, 20-Jul-2005.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
|
Theorem | shftdm 10764* |
Domain of a relation shifted by 𝐴. The set on the right is more
commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every
element of dom 𝐹). (Contributed by Mario Carneiro,
3-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) |
|
Theorem | shftfib 10765 |
Value of a fiber of the relation 𝐹. (Contributed by Mario
Carneiro, 4-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
|
Theorem | shftfn 10766* |
Functionality and domain of a sequence shifted by 𝐴. (Contributed
by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
|
Theorem | shftval 10767 |
Value of a sequence shifted by 𝐴. (Contributed by NM,
20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) |
|
Theorem | shftval2 10768 |
Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM,
20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) |
|
Theorem | shftval3 10769 |
Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM,
20-Jul-2005.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) |
|
Theorem | shftval4 10770 |
Value of a sequence shifted by -𝐴. (Contributed by NM,
18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
|
Theorem | shftval5 10771 |
Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) |
|
Theorem | shftf 10772* |
Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
|
Theorem | 2shfti 10773 |
Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised
by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) |
|
Theorem | shftidt2 10774 |
Identity law for the shift operation. (Contributed by Mario Carneiro,
5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) |
|
Theorem | shftidt 10775 |
Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.)
(Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) |
|
Theorem | shftcan1 10776 |
Cancellation law for the shift operation. (Contributed by NM,
4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
|
Theorem | shftcan2 10777 |
Cancellation law for the shift operation. (Contributed by NM,
4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
|
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) |
|
Theorem | shftvalg 10778 |
Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton,
16-Dec-2017.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) |
|
Theorem | shftval4g 10779 |
Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon,
19-Aug-2021.)
|
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) |
|
Theorem | seq3shft 10780* |
Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.)
(Revised by Jim Kingdon, 17-Oct-2022.)
|
⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 − 𝑁))) → (𝐹‘𝑥) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) |
|
4.7.2 Real and imaginary parts;
conjugate
|
|
Syntax | ccj 10781 |
Extend class notation to include complex conjugate function.
|
class ∗ |
|
Syntax | cre 10782 |
Extend class notation to include real part of a complex number.
|
class ℜ |
|
Syntax | cim 10783 |
Extend class notation to include imaginary part of a complex number.
|
class ℑ |
|
Definition | df-cj 10784* |
Define the complex conjugate function. See cjcli 10855 for its closure and
cjval 10787 for its value. (Contributed by NM,
9-May-1999.) (Revised by
Mario Carneiro, 6-Nov-2013.)
|
⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
|
Definition | df-re 10785 |
Define a function whose value is the real part of a complex number. See
reval 10791 for its value, recli 10853 for its closure, and replim 10801 for its use
in decomposing a complex number. (Contributed by NM, 9-May-1999.)
|
⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
|
Definition | df-im 10786 |
Define a function whose value is the imaginary part of a complex number.
See imval 10792 for its value, imcli 10854 for its closure, and replim 10801 for its
use in decomposing a complex number. (Contributed by NM,
9-May-1999.)
|
⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
|
Theorem | cjval 10787* |
The value of the conjugate of a complex number. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) =
(℩𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈
ℝ))) |
|
Theorem | cjth 10788 |
The defining property of the complex conjugate. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈
ℝ)) |
|
Theorem | cjf 10789 |
Domain and codomain of the conjugate function. (Contributed by Mario
Carneiro, 6-Nov-2013.)
|
⊢
∗:ℂ⟶ℂ |
|
Theorem | cjcl 10790 |
The conjugate of a complex number is a complex number (closure law).
(Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro,
6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) |
|
Theorem | reval 10791 |
The value of the real part of a complex number. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
|
Theorem | imval 10792 |
The value of the imaginary part of a complex number. (Contributed by
NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) |
|
Theorem | imre 10793 |
The imaginary part of a complex number in terms of the real part
function. (Contributed by NM, 12-May-2005.) (Revised by Mario
Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i ·
𝐴))) |
|
Theorem | reim 10794 |
The real part of a complex number in terms of the imaginary part
function. (Contributed by Mario Carneiro, 31-Mar-2015.)
|
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i ·
𝐴))) |
|
Theorem | recl 10795 |
The real part of a complex number is real. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈
ℝ) |
|
Theorem | imcl 10796 |
The imaginary part of a complex number is real. (Contributed by NM,
9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈
ℝ) |
|
Theorem | ref 10797 |
Domain and codomain of the real part function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢
ℜ:ℂ⟶ℝ |
|
Theorem | imf 10798 |
Domain and codomain of the imaginary part function. (Contributed by
Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
|
⊢
ℑ:ℂ⟶ℝ |
|
Theorem | crre 10799 |
The real part of a complex number representation. Definition 10-3.1 of
[Gleason] p. 132. (Contributed by NM,
12-May-2005.) (Revised by Mario
Carneiro, 7-Nov-2013.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(ℜ‘(𝐴 + (i
· 𝐵))) = 𝐴) |
|
Theorem | crim 10800 |
The real part of a complex number representation. Definition 10-3.1 of
[Gleason] p. 132. (Contributed by NM,
12-May-2005.) (Revised by Mario
Carneiro, 7-Nov-2013.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(ℑ‘(𝐴 + (i
· 𝐵))) = 𝐵) |