Theorem List for Intuitionistic Logic Explorer - 10701-10800   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | nnsqcl 10701 | 
The naturals are closed under squaring.  (Contributed by Scott Fenton,
     29-Mar-2014.)  (Revised by Mario Carneiro, 19-Apr-2014.)
 | 
| ⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ) | 
|   | 
| Theorem | zsqcl 10702 | 
Integers are closed under squaring.  (Contributed by Scott Fenton,
     18-Apr-2014.)  (Revised by Mario Carneiro, 19-Apr-2014.)
 | 
| ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | 
|   | 
| Theorem | qsqcl 10703 | 
The square of a rational is rational.  (Contributed by Stefan O'Rear,
     15-Sep-2014.)
 | 
| ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | 
|   | 
| Theorem | sq11 10704 | 
The square function is one-to-one for nonnegative reals.  Also see
     sq11ap 10799 which would easily follow from this given
excluded middle, but
     which for us is proved another way.  (Contributed by NM, 8-Apr-2001.)
     (Proof shortened by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | lt2sq 10705 | 
The square function on nonnegative reals is strictly monotonic.
     (Contributed by NM, 24-Feb-2006.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | 
|   | 
| Theorem | le2sq 10706 | 
The square function on nonnegative reals is monotonic.  (Contributed by
     NM, 18-Oct-1999.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | 
|   | 
| Theorem | le2sq2 10707 | 
The square of a 'less than or equal to' ordering.  (Contributed by NM,
     21-Mar-2008.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵↑2)) | 
|   | 
| Theorem | sqge0 10708 | 
A square of a real is nonnegative.  (Contributed by NM, 18-Oct-1999.)
 | 
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | 
|   | 
| Theorem | zsqcl2 10709 | 
The square of an integer is a nonnegative integer.  (Contributed by Mario
     Carneiro, 18-Apr-2014.)  (Revised by Mario Carneiro, 14-Jul-2014.)
 | 
| ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈
 ℕ0) | 
|   | 
| Theorem | sumsqeq0 10710 | 
Two real numbers are equal to 0 iff their Euclidean norm is.  (Contributed
     by NM, 29-Apr-2005.)  (Revised by Stefan O'Rear, 5-Oct-2014.)  (Proof
     shortened by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ ((𝐴↑2) + (𝐵↑2)) = 0)) | 
|   | 
| Theorem | sqvali 10711 | 
Value of square.  Inference version.  (Contributed by NM,
       1-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴↑2) = (𝐴 · 𝐴) | 
|   | 
| Theorem | sqcli 10712 | 
Closure of square.  (Contributed by NM, 2-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴↑2) ∈ ℂ | 
|   | 
| Theorem | sqeq0i 10713 | 
A number is zero iff its square is zero.  (Contributed by NM,
       2-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ ((𝐴↑2) = 0 ↔ 𝐴 = 0) | 
|   | 
| Theorem | sqmuli 10714 | 
Distribution of square over multiplication.  (Contributed by NM,
       3-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2)) | 
|   | 
| Theorem | sqdivapi 10715 | 
Distribution of square over division.  (Contributed by Jim Kingdon,
       12-Jun-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)) | 
|   | 
| Theorem | resqcli 10716 | 
Closure of square in reals.  (Contributed by NM, 2-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ (𝐴↑2) ∈ ℝ | 
|   | 
| Theorem | sqgt0api 10717 | 
The square of a nonzero real is positive.  (Contributed by Jim Kingdon,
       12-Jun-2020.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ (𝐴 # 0 → 0 < (𝐴↑2)) | 
|   | 
| Theorem | sqge0i 10718 | 
A square of a real is nonnegative.  (Contributed by NM, 3-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ   
 ⇒   ⊢ 0 ≤ (𝐴↑2) | 
|   | 
| Theorem | lt2sqi 10719 | 
The square function on nonnegative reals is strictly monotonic.
       (Contributed by NM, 12-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | 
|   | 
| Theorem | le2sqi 10720 | 
The square function on nonnegative reals is monotonic.  (Contributed by
       NM, 12-Sep-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | 
|   | 
| Theorem | sq11i 10721 | 
The square function is one-to-one for nonnegative reals.  (Contributed
       by NM, 27-Oct-1999.)
 | 
| ⊢ 𝐴 ∈ ℝ    &   ⊢ 𝐵 ∈
 ℝ    ⇒   ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | sq0 10722 | 
The square of 0 is 0.  (Contributed by NM, 6-Jun-2006.)
 | 
| ⊢ (0↑2) = 0 | 
|   | 
| Theorem | sq0i 10723 | 
If a number is zero, its square is zero.  (Contributed by FL,
     10-Dec-2006.)
 | 
| ⊢ (𝐴 = 0 → (𝐴↑2) = 0) | 
|   | 
| Theorem | sq0id 10724 | 
If a number is zero, its square is zero.  Deduction form of sq0i 10723.
       Converse of sqeq0d 10764.  (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 = 0)    ⇒   ⊢ (𝜑 → (𝐴↑2) = 0) | 
|   | 
| Theorem | sq1 10725 | 
The square of 1 is 1.  (Contributed by NM, 22-Aug-1999.)
 | 
| ⊢ (1↑2) = 1 | 
|   | 
| Theorem | neg1sqe1 10726 | 
-1 squared is 1 (common case).  (Contributed by David
A. Wheeler,
     8-Dec-2018.)
 | 
| ⊢ (-1↑2) = 1 | 
|   | 
| Theorem | sq2 10727 | 
The square of 2 is 4.  (Contributed by NM, 22-Aug-1999.)
 | 
| ⊢ (2↑2) = 4 | 
|   | 
| Theorem | sq3 10728 | 
The square of 3 is 9.  (Contributed by NM, 26-Apr-2006.)
 | 
| ⊢ (3↑2) = 9 | 
|   | 
| Theorem | sq4e2t8 10729 | 
The square of 4 is 2 times 8.  (Contributed by AV, 20-Jul-2021.)
 | 
| ⊢ (4↑2) = (2 · 8) | 
|   | 
| Theorem | cu2 10730 | 
The cube of 2 is 8.  (Contributed by NM, 2-Aug-2004.)
 | 
| ⊢ (2↑3) = 8 | 
|   | 
| Theorem | irec 10731 | 
The reciprocal of i.  (Contributed by NM, 11-Oct-1999.)
 | 
| ⊢ (1 / i) = -i | 
|   | 
| Theorem | i2 10732 | 
i squared.  (Contributed by NM, 6-May-1999.)
 | 
| ⊢ (i↑2) = -1 | 
|   | 
| Theorem | i3 10733 | 
i cubed.  (Contributed by NM, 31-Jan-2007.)
 | 
| ⊢ (i↑3) = -i | 
|   | 
| Theorem | i4 10734 | 
i to the fourth power.  (Contributed by NM,
31-Jan-2007.)
 | 
| ⊢ (i↑4) = 1 | 
|   | 
| Theorem | nnlesq 10735 | 
A positive integer is less than or equal to its square.  For general
     integers, see zzlesq 10800.  (Contributed by NM, 15-Sep-1999.) 
(Revised by
     Mario Carneiro, 12-Sep-2015.)
 | 
| ⊢ (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁↑2)) | 
|   | 
| Theorem | iexpcyc 10736 | 
Taking i to the 𝐾-th power is the same as using the
𝐾 mod
4
     -th power instead, by i4 10734.  (Contributed by Mario Carneiro,
     7-Jul-2014.)
 | 
| ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) | 
|   | 
| Theorem | expnass 10737 | 
A counterexample showing that exponentiation is not associative.
     (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010.)
 | 
| ⊢ ((3↑3)↑3) <
 (3↑(3↑3)) | 
|   | 
| Theorem | subsq 10738 | 
Factor the difference of two squares.  (Contributed by NM,
     21-Feb-2008.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | 
|   | 
| Theorem | subsq2 10739 | 
Express the difference of the squares of two numbers as a polynomial in
     the difference of the numbers.  (Contributed by NM, 21-Feb-2008.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = (((𝐴 − 𝐵)↑2) + ((2 · 𝐵) · (𝐴 − 𝐵)))) | 
|   | 
| Theorem | binom2i 10740 | 
The square of a binomial.  (Contributed by NM, 11-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) | 
|   | 
| Theorem | subsqi 10741 | 
Factor the difference of two squares.  (Contributed by NM,
       7-Feb-2005.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) | 
|   | 
| Theorem | qsqeqor 10742 | 
The squares of two rational numbers are equal iff one number equals the
     other or its negative.  (Contributed by Jim Kingdon, 1-Nov-2024.)
 | 
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵))) | 
|   | 
| Theorem | binom2 10743 | 
The square of a binomial.  (Contributed by FL, 10-Dec-2006.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
|   | 
| Theorem | binom21 10744 | 
Special case of binom2 10743 where 𝐵 = 1.  (Contributed by Scott Fenton,
     11-May-2014.)
 | 
| ⊢ (𝐴 ∈ ℂ → ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · 𝐴)) + 1)) | 
|   | 
| Theorem | binom2sub 10745 | 
Expand the square of a subtraction.  (Contributed by Scott Fenton,
     10-Jun-2013.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) | 
|   | 
| Theorem | binom2sub1 10746 | 
Special case of binom2sub 10745 where 𝐵 = 1.  (Contributed by AV,
     2-Aug-2021.)
 | 
| ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | 
|   | 
| Theorem | binom2subi 10747 | 
Expand the square of a subtraction.  (Contributed by Scott Fenton,
       13-Jun-2013.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴 − 𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)) | 
|   | 
| Theorem | mulbinom2 10748 | 
The square of a binomial with factor.  (Contributed by AV,
     19-Jul-2021.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2))) | 
|   | 
| Theorem | binom3 10749 | 
The cube of a binomial.  (Contributed by Mario Carneiro, 24-Apr-2015.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) | 
|   | 
| Theorem | zesq 10750 | 
An integer is even iff its square is even.  (Contributed by Mario
     Carneiro, 12-Sep-2015.)
 | 
| ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈
 ℤ)) | 
|   | 
| Theorem | nnesq 10751 | 
A positive integer is even iff its square is even.  (Contributed by NM,
     20-Aug-2001.)  (Revised by Mario Carneiro, 12-Sep-2015.)
 | 
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ((𝑁↑2) / 2) ∈
 ℕ)) | 
|   | 
| Theorem | bernneq 10752 | 
Bernoulli's inequality, due to Johan Bernoulli (1667-1748).
       (Contributed by NM, 21-Feb-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ -1 ≤
 𝐴) → (1 + (𝐴 · 𝑁)) ≤ ((1 + 𝐴)↑𝑁)) | 
|   | 
| Theorem | bernneq2 10753 | 
Variation of Bernoulli's inequality bernneq 10752.  (Contributed by NM,
     18-Oct-2007.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤
 𝐴) → (((𝐴 − 1) · 𝑁) + 1) ≤ (𝐴↑𝑁)) | 
|   | 
| Theorem | bernneq3 10754 | 
A corollary of bernneq 10752.  (Contributed by Mario Carneiro,
     11-Mar-2014.)
 | 
| ⊢ ((𝑃 ∈ (ℤ≥‘2)
 ∧ 𝑁 ∈
 ℕ0) → 𝑁 < (𝑃↑𝑁)) | 
|   | 
| Theorem | expnbnd 10755* | 
Exponentiation with a base greater than 1 has no upper bound.
       (Contributed by NM, 20-Oct-2007.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑘 ∈ ℕ 𝐴 < (𝐵↑𝑘)) | 
|   | 
| Theorem | expnlbnd 10756* | 
The reciprocal of exponentiation with a base greater than 1 has no
       positive lower bound.  (Contributed by NM, 18-Jul-2008.)
 | 
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 <
 𝐵) → ∃𝑘 ∈ ℕ (1 / (𝐵↑𝑘)) < 𝐴) | 
|   | 
| Theorem | expnlbnd2 10757* | 
The reciprocal of exponentiation with a base greater than 1 has no
       positive lower bound.  (Contributed by NM, 18-Jul-2008.)  (Proof
       shortened by Mario Carneiro, 5-Jun-2014.)
 | 
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 <
 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
 (ℤ≥‘𝑗)(1 / (𝐵↑𝑘)) < 𝐴) | 
|   | 
| Theorem | modqexp 10758 | 
Exponentiation property of the modulo operation, see theorem 5.2(c) in
       [ApostolNT] p. 107.  (Contributed by
Mario Carneiro, 28-Feb-2014.)
       (Revised by Jim Kingdon, 7-Sep-2024.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ)    &   ⊢ (𝜑 → 𝐵 ∈ ℤ)    &   ⊢ (𝜑 → 𝐶 ∈ ℕ0)    &   ⊢ (𝜑 → 𝐷 ∈ ℚ)    &   ⊢ (𝜑 → 0 < 𝐷)   
 &   ⊢ (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))    ⇒   ⊢ (𝜑 → ((𝐴↑𝐶) mod 𝐷) = ((𝐵↑𝐶) mod 𝐷)) | 
|   | 
| Theorem | exp0d 10759 | 
Value of a complex number raised to the 0th power.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴↑0) = 1) | 
|   | 
| Theorem | exp1d 10760 | 
Value of a complex number raised to the first power.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴↑1) = 𝐴) | 
|   | 
| Theorem | expeq0d 10761 | 
Positive integer exponentiation is 0 iff its base is 0.  (Contributed
         by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ)    &   ⊢ (𝜑 → (𝐴↑𝑁) = 0)    ⇒   ⊢ (𝜑 → 𝐴 = 0) | 
|   | 
| Theorem | sqvald 10762 | 
Value of square.  Inference version.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) | 
|   | 
| Theorem | sqcld 10763 | 
Closure of square.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) | 
|   | 
| Theorem | sqeq0d 10764 | 
A number is zero iff its square is zero.  (Contributed by Mario
         Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → (𝐴↑2) = 0)   
 ⇒   ⊢ (𝜑 → 𝐴 = 0) | 
|   | 
| Theorem | expcld 10765 | 
Closure law for nonnegative integer exponentiation.  (Contributed by
         Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | 
|   | 
| Theorem | expp1d 10766 | 
Value of a complex number raised to a nonnegative integer power plus
         one.  Part of Definition 10-4.1 of [Gleason] p. 134.  (Contributed by
         Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | 
|   | 
| Theorem | expaddd 10767 | 
Sum of exponents law for nonnegative integer exponentiation.
         Proposition 10-4.2(a) of [Gleason] p.
135.  (Contributed by Mario
         Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑀 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | 
|   | 
| Theorem | expmuld 10768 | 
Product of exponents law for positive integer exponentiation.
         Proposition 10-4.2(b) of [Gleason] p.
135, restricted to nonnegative
         integer exponents.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑀 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | 
|   | 
| Theorem | sqrecapd 10769 | 
Square of reciprocal.  (Contributed by Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2))) | 
|   | 
| Theorem | expclzapd 10770 | 
Closure law for integer exponentiation.  (Contributed by Jim Kingdon,
         12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | 
|   | 
| Theorem | expap0d 10771 | 
Nonnegative integer exponentiation is nonzero if its base is nonzero.
         (Contributed by Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑𝑁) # 0) | 
|   | 
| Theorem | expnegapd 10772 | 
Value of a complex number raised to a negative power.  (Contributed by
         Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | 
|   | 
| Theorem | exprecapd 10773 | 
Nonnegative integer exponentiation of a reciprocal.  (Contributed by
         Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | 
|   | 
| Theorem | expp1zapd 10774 | 
Value of a nonzero complex number raised to an integer power plus one.
         (Contributed by Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | 
|   | 
| Theorem | expm1apd 10775 | 
Value of a complex number raised to an integer power minus one.
         (Contributed by Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | 
|   | 
| Theorem | expsubapd 10776 | 
Exponent subtraction law for nonnegative integer exponentiation.
         (Contributed by Jim Kingdon, 12-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)    &   ⊢ (𝜑 → 𝑀 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | 
|   | 
| Theorem | sqmuld 10777 | 
Distribution of square over multiplication.  (Contributed by Mario
       Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | 
|   | 
| Theorem | sqdivapd 10778 | 
Distribution of square over division.  (Contributed by Jim Kingdon,
         13-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | 
|   | 
| Theorem | expdivapd 10779 | 
Nonnegative integer exponentiation of a quotient.  (Contributed by Jim
         Kingdon, 13-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 # 0)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | 
|   | 
| Theorem | mulexpd 10780 | 
Positive integer exponentiation of a product.  Proposition 10-4.2(c) of
       [Gleason] p. 135, restricted to
nonnegative integer exponents.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐵 ∈ ℂ)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | 
|   | 
| Theorem | 0expd 10781 | 
Value of zero raised to a positive integer power.  (Contributed by Mario
       Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ)   
 ⇒   ⊢ (𝜑 → (0↑𝑁) = 0) | 
|   | 
| Theorem | reexpcld 10782 | 
Closure of exponentiation of reals.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | 
|   | 
| Theorem | expge0d 10783 | 
A nonnegative real raised to a nonnegative integer is nonnegative.
         (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 0 ≤ 𝐴)    ⇒   ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) | 
|   | 
| Theorem | expge1d 10784 | 
A real greater than or equal to 1 raised to a nonnegative integer is
         greater than or equal to 1.  (Contributed by Mario Carneiro,
         28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝑁 ∈ ℕ0)    &   ⊢ (𝜑 → 1 ≤ 𝐴)    ⇒   ⊢ (𝜑 → 1 ≤ (𝐴↑𝑁)) | 
|   | 
| Theorem | sqoddm1div8 10785 | 
A squared odd number minus 1 divided by 8 is the odd number multiplied
     with its successor divided by 2.  (Contributed by AV, 19-Jul-2021.)
 | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2)) | 
|   | 
| Theorem | nnsqcld 10786 | 
The naturals are closed under squaring.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℕ)   
 ⇒   ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) | 
|   | 
| Theorem | nnexpcld 10787 | 
Closure of exponentiation of nonnegative integers.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℕ)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) | 
|   | 
| Theorem | nn0expcld 10788 | 
Closure of exponentiation of nonnegative integers.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈
 ℕ0)    ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈
 ℕ0) | 
|   | 
| Theorem | rpexpcld 10789 | 
Closure law for exponentiation of positive reals.  (Contributed by Mario
       Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ+)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈
 ℝ+) | 
|   | 
| Theorem | reexpclzapd 10790 | 
Closure of exponentiation of reals.  (Contributed by Jim Kingdon,
       13-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 # 0)    &   ⊢ (𝜑 → 𝑁 ∈ ℤ)   
 ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | 
|   | 
| Theorem | resqcld 10791 | 
Closure of square in reals.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → (𝐴↑2) ∈ ℝ) | 
|   | 
| Theorem | sqge0d 10792 | 
A square of a real is nonnegative.  (Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → 0 ≤ (𝐴↑2)) | 
|   | 
| Theorem | sqgt0apd 10793 | 
The square of a real apart from zero is positive.  (Contributed by Jim
         Kingdon, 13-Jun-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 # 0)    ⇒   ⊢ (𝜑 → 0 < (𝐴↑2)) | 
|   | 
| Theorem | leexp2ad 10794 | 
Ordering relationship for exponentiation.  (Contributed by Mario
         Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 1 ≤ 𝐴)   
 &   ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))   
 ⇒   ⊢ (𝜑 → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | 
|   | 
| Theorem | leexp2rd 10795 | 
Ordering relationship for exponentiation.  (Contributed by Mario
         Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝑀 ∈ ℕ0)    &   ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 𝐴 ≤ 1)    ⇒   ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | 
|   | 
| Theorem | lt2sqd 10796 | 
The square function on nonnegative reals is strictly monotonic.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 0 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | 
|   | 
| Theorem | le2sqd 10797 | 
The square function on nonnegative reals is monotonic.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 0 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | 
|   | 
| Theorem | sq11d 10798 | 
The square function is one-to-one for nonnegative reals.  (Contributed
       by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 0 ≤ 𝐵)   
 &   ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2))    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | sq11ap 10799 | 
Analogue to sq11 10704 but for apartness.  (Contributed by Jim
Kingdon,
     12-Aug-2021.)
 | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) # (𝐵↑2) ↔ 𝐴 # 𝐵)) | 
|   | 
| Theorem | zzlesq 10800 | 
An integer is less than or equal to its square.  (Contributed by BJ,
     6-Feb-2025.)
 | 
| ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁↑2)) |