HomeHome Intuitionistic Logic Explorer
Theorem List (p. 108 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10701-10800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.6.7  Ordered pair theorem for nonnegative integers
 
Theoremnn0le2msqd 10701 The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ (𝐴 Β· 𝐴) ≀ (𝐡 Β· 𝐡)))
 
Theoremnn0opthlem1d 10702 A rather pretty lemma for nn0opth2 10706. (Contributed by Jim Kingdon, 31-Oct-2021.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐢 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝐴 < 𝐢 ↔ ((𝐴 Β· 𝐴) + (2 Β· 𝐴)) < (𝐢 Β· 𝐢)))
 
Theoremnn0opthlem2d 10703 Lemma for nn0opth2 10706. (Contributed by Jim Kingdon, 31-Oct-2021.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    &   (πœ‘ β†’ 𝐢 ∈ β„•0)    &   (πœ‘ β†’ 𝐷 ∈ β„•0)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) < 𝐢 β†’ ((𝐢 Β· 𝐢) + 𝐷) β‰  (((𝐴 + 𝐡) Β· (𝐴 + 𝐡)) + 𝐡)))
 
Theoremnn0opthd 10704 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐡 by (((𝐴 + 𝐡) Β· (𝐴 + 𝐡)) + 𝐡). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3603 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    &   (πœ‘ β†’ 𝐢 ∈ β„•0)    &   (πœ‘ β†’ 𝐷 ∈ β„•0)    β‡’   (πœ‘ β†’ ((((𝐴 + 𝐡) Β· (𝐴 + 𝐡)) + 𝐡) = (((𝐢 + 𝐷) Β· (𝐢 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
 
Theoremnn0opth2d 10705 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10704. (Contributed by Jim Kingdon, 31-Oct-2021.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    &   (πœ‘ β†’ 𝐢 ∈ β„•0)    &   (πœ‘ β†’ 𝐷 ∈ β„•0)    β‡’   (πœ‘ β†’ ((((𝐴 + 𝐡)↑2) + 𝐡) = (((𝐢 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
 
Theoremnn0opth2 10706 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10704. (Contributed by NM, 22-Jul-2004.)
(((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0) ∧ (𝐢 ∈ β„•0 ∧ 𝐷 ∈ β„•0)) β†’ ((((𝐴 + 𝐡)↑2) + 𝐡) = (((𝐢 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐢 ∧ 𝐡 = 𝐷)))
 
4.6.8  Factorial function
 
Syntaxcfa 10707 Extend class notation to include the factorial of nonnegative integers.
class !
 
Definitiondf-fac 10708 Define the factorial function on nonnegative integers. For example, (!β€˜5) = 120 because 1 Β· 2 Β· 3 Β· 4 Β· 5 = 120 (ex-fac 14565). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.)
! = ({⟨0, 1⟩} βˆͺ seq1( Β· , I ))
 
Theoremfacnn 10709 Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
(𝑁 ∈ β„• β†’ (!β€˜π‘) = (seq1( Β· , I )β€˜π‘))
 
Theoremfac0 10710 The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
(!β€˜0) = 1
 
Theoremfac1 10711 The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
(!β€˜1) = 1
 
Theoremfacp1 10712 The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
(𝑁 ∈ β„•0 β†’ (!β€˜(𝑁 + 1)) = ((!β€˜π‘) Β· (𝑁 + 1)))
 
Theoremfac2 10713 The factorial of 2. (Contributed by NM, 17-Mar-2005.)
(!β€˜2) = 2
 
Theoremfac3 10714 The factorial of 3. (Contributed by NM, 17-Mar-2005.)
(!β€˜3) = 6
 
Theoremfac4 10715 The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.)
(!β€˜4) = 24
 
Theoremfacnn2 10716 Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.)
(𝑁 ∈ β„• β†’ (!β€˜π‘) = ((!β€˜(𝑁 βˆ’ 1)) Β· 𝑁))
 
Theoremfaccl 10717 Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
(𝑁 ∈ β„•0 β†’ (!β€˜π‘) ∈ β„•)
 
Theoremfaccld 10718 Closure of the factorial function, deduction version of faccl 10717. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝑁 ∈ β„•0)    β‡’   (πœ‘ β†’ (!β€˜π‘) ∈ β„•)
 
Theoremfacne0 10719 The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.)
(𝑁 ∈ β„•0 β†’ (!β€˜π‘) β‰  0)
 
Theoremfacdiv 10720 A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„• ∧ 𝑁 ≀ 𝑀) β†’ ((!β€˜π‘€) / 𝑁) ∈ β„•)
 
Theoremfacndiv 10721 No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
(((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•) ∧ (1 < 𝑁 ∧ 𝑁 ≀ 𝑀)) β†’ Β¬ (((!β€˜π‘€) + 1) / 𝑁) ∈ β„€)
 
Theoremfacwordi 10722 Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0 ∧ 𝑀 ≀ 𝑁) β†’ (!β€˜π‘€) ≀ (!β€˜π‘))
 
Theoremfaclbnd 10723 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (𝑀↑(𝑁 + 1)) ≀ ((𝑀↑𝑀) Β· (!β€˜π‘)))
 
Theoremfaclbnd2 10724 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
(𝑁 ∈ β„•0 β†’ ((2↑𝑁) / 2) ≀ (!β€˜π‘))
 
Theoremfaclbnd3 10725 A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (𝑀↑𝑁) ≀ ((𝑀↑𝑀) Β· (!β€˜π‘)))
 
Theoremfaclbnd6 10726 Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
((𝑁 ∈ β„•0 ∧ 𝑀 ∈ β„•0) β†’ ((!β€˜π‘) Β· ((𝑁 + 1)↑𝑀)) ≀ (!β€˜(𝑁 + 𝑀)))
 
Theoremfacubnd 10727 An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝑁 ∈ β„•0 β†’ (!β€˜π‘) ≀ (𝑁↑𝑁))
 
Theoremfacavg 10728 The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (!β€˜(βŒŠβ€˜((𝑀 + 𝑁) / 2))) ≀ ((!β€˜π‘€) Β· (!β€˜π‘)))
 
4.6.9  The binomial coefficient operation
 
Syntaxcbc 10729 Extend class notation to include the binomial coefficient operation (combinatorial choose operation).
class C
 
Definitiondf-bc 10730* Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 14566).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≀ π‘˜ ≀ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

C = (𝑛 ∈ β„•0, π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ (0...𝑛), ((!β€˜π‘›) / ((!β€˜(𝑛 βˆ’ π‘˜)) Β· (!β€˜π‘˜))), 0))
 
Theorembcval 10731 Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≀ 𝐾 ≀ 𝑁 does not hold. See bcval2 10732 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€) β†’ (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!β€˜π‘) / ((!β€˜(𝑁 βˆ’ 𝐾)) Β· (!β€˜πΎ))), 0))
 
Theorembcval2 10732 Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐾 ∈ (0...𝑁) β†’ (𝑁C𝐾) = ((!β€˜π‘) / ((!β€˜(𝑁 βˆ’ 𝐾)) Β· (!β€˜πΎ))))
 
Theorembcval3 10733 Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€ ∧ Β¬ 𝐾 ∈ (0...𝑁)) β†’ (𝑁C𝐾) = 0)
 
Theorembcval4 10734 Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) β†’ (𝑁C𝐾) = 0)
 
Theorembcrpcl 10735 Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10750.) (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) β†’ (𝑁C𝐾) ∈ ℝ+)
 
Theorembccmpl 10736 "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€) β†’ (𝑁C𝐾) = (𝑁C(𝑁 βˆ’ 𝐾)))
 
Theorembcn0 10737 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ β„•0 β†’ (𝑁C0) = 1)
 
Theorembc0k 10738 The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 10737). (Contributed by Alexander van der Vekens, 1-Jan-2018.)
(𝐾 ∈ β„• β†’ (0C𝐾) = 0)
 
Theorembcnn 10739 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ β„•0 β†’ (𝑁C𝑁) = 1)
 
Theorembcn1 10740 Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ β„•0 β†’ (𝑁C1) = 𝑁)
 
Theorembcnp1n 10741 Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ β„•0 β†’ ((𝑁 + 1)C𝑁) = (𝑁 + 1))
 
Theorembcm1k 10742 The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (1...𝑁) β†’ (𝑁C𝐾) = ((𝑁C(𝐾 βˆ’ 1)) Β· ((𝑁 βˆ’ (𝐾 βˆ’ 1)) / 𝐾)))
 
Theorembcp1n 10743 The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) β†’ ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) Β· ((𝑁 + 1) / ((𝑁 + 1) βˆ’ 𝐾))))
 
Theorembcp1nk 10744 The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
(𝐾 ∈ (0...𝑁) β†’ ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) Β· ((𝑁 + 1) / (𝐾 + 1))))
 
Theorembcval5 10745 Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 Β· (𝑁 βˆ’ 1) Β· ... Β· ((𝑁 βˆ’ 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„•) β†’ (𝑁C𝐾) = ((seq((𝑁 βˆ’ 𝐾) + 1)( Β· , I )β€˜π‘) / (!β€˜πΎ)))
 
Theorembcn2 10746 Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
(𝑁 ∈ β„•0 β†’ (𝑁C2) = ((𝑁 Β· (𝑁 βˆ’ 1)) / 2))
 
Theorembcp1m1 10747 Compute the binomial coefficient of (𝑁 + 1) over (𝑁 βˆ’ 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
(𝑁 ∈ β„•0 β†’ ((𝑁 + 1)C(𝑁 βˆ’ 1)) = (((𝑁 + 1) Β· 𝑁) / 2))
 
Theorembcpasc 10748 Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€) β†’ ((𝑁C𝐾) + (𝑁C(𝐾 βˆ’ 1))) = ((𝑁 + 1)C𝐾))
 
Theorembccl 10749 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝑁 ∈ β„•0 ∧ 𝐾 ∈ β„€) β†’ (𝑁C𝐾) ∈ β„•0)
 
Theorembccl2 10750 A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) β†’ (𝑁C𝐾) ∈ β„•)
 
Theorembcn2m1 10751 Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 βˆ’ 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
(𝑁 ∈ β„• β†’ ((𝑁 βˆ’ 1) + ((𝑁 βˆ’ 1)C2)) = (𝑁C2))
 
Theorembcn2p1 10752 Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
(𝑁 ∈ β„•0 β†’ (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2))
 
Theorempermnn 10753 The number of permutations of 𝑁 βˆ’ 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
(𝑅 ∈ (0...𝑁) β†’ ((!β€˜π‘) / (!β€˜π‘…)) ∈ β„•)
 
Theorembcnm1 10754 The binomial coefficent of (𝑁 βˆ’ 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.)
(𝑁 ∈ β„•0 β†’ (𝑁C(𝑁 βˆ’ 1)) = 𝑁)
 
Theorem4bc3eq4 10755 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
(4C3) = 4
 
Theorem4bc2eq6 10756 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
(4C2) = 6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 10757 Extend the definition of a class to include the set size function.
class β™―
 
Definitiondf-ihash 10758* Define the set size function β™―, which gives the cardinality of a finite set as a member of β„•0, and assigns all infinite sets the value +∞. For example, (β™―β€˜{0, 1, 2}) = 3.

Note that we use the sharp sign (β™―) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8541). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of βˆͺ and β‰Ό) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

β™― = ((frec((π‘₯ ∈ β„€ ↦ (π‘₯ + 1)), 0) βˆͺ {βŸ¨Ο‰, +∞⟩}) ∘ (π‘₯ ∈ V ↦ βˆͺ {𝑦 ∈ (Ο‰ βˆͺ {Ο‰}) ∣ 𝑦 β‰Ό π‘₯}))
 
Theoremhashinfuni 10759* The ordinal size of an infinite set is Ο‰. (Contributed by Jim Kingdon, 20-Feb-2022.)
(Ο‰ β‰Ό 𝐴 β†’ βˆͺ {𝑦 ∈ (Ο‰ βˆͺ {Ο‰}) ∣ 𝑦 β‰Ό 𝐴} = Ο‰)
 
Theoremhashinfom 10760 The value of the β™― function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
(Ο‰ β‰Ό 𝐴 β†’ (β™―β€˜π΄) = +∞)
 
Theoremhashennnuni 10761* The ordinal size of a set equinumerous to an element of Ο‰ is that element of Ο‰. (Contributed by Jim Kingdon, 20-Feb-2022.)
((𝑁 ∈ Ο‰ ∧ 𝑁 β‰ˆ 𝐴) β†’ βˆͺ {𝑦 ∈ (Ο‰ βˆͺ {Ο‰}) ∣ 𝑦 β‰Ό 𝐴} = 𝑁)
 
Theoremhashennn 10762* The size of a set equinumerous to an element of Ο‰. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝑁 ∈ Ο‰ ∧ 𝑁 β‰ˆ 𝐴) β†’ (β™―β€˜π΄) = (frec((π‘₯ ∈ β„€ ↦ (π‘₯ + 1)), 0)β€˜π‘))
 
Theoremhashcl 10763 Closure of the β™― function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
(𝐴 ∈ Fin β†’ (β™―β€˜π΄) ∈ β„•0)
 
Theoremhashfiv01gt1 10764 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝑀 ∈ Fin β†’ ((β™―β€˜π‘€) = 0 ∨ (β™―β€˜π‘€) = 1 ∨ 1 < (β™―β€˜π‘€)))
 
Theoremhashfz1 10765 The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑁 ∈ β„•0 β†’ (β™―β€˜(1...𝑁)) = 𝑁)
 
Theoremhashen 10766 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ ((β™―β€˜π΄) = (β™―β€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))
 
Theoremhasheqf1o 10767* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ ((β™―β€˜π΄) = (β™―β€˜π΅) ↔ βˆƒπ‘“ 𝑓:𝐴–1-1-onto→𝐡))
 
Theoremfiinfnf1o 10768* There is no bijection between a finite set and an infinite set. By infnfi 6897 the theorem would also hold if "infinite" were expressed as Ο‰ β‰Ό 𝐡. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
((𝐴 ∈ Fin ∧ Β¬ 𝐡 ∈ Fin) β†’ Β¬ βˆƒπ‘“ 𝑓:𝐴–1-1-onto→𝐡)
 
Theoremfihasheqf1oi 10769 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐡) β†’ (β™―β€˜π΄) = (β™―β€˜π΅))
 
Theoremfihashf1rn 10770 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
 
Theoremfihasheqf1od 10771 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐹:𝐴–1-1-onto→𝐡)    β‡’   (πœ‘ β†’ (β™―β€˜π΄) = (β™―β€˜π΅))
 
Theoremfz1eqb 10772 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁))
 
Theoremfiltinf 10773 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ Ο‰ β‰Ό 𝐡) β†’ (β™―β€˜π΄) < (β™―β€˜π΅))
 
Theoremisfinite4im 10774 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
(𝐴 ∈ Fin β†’ (1...(β™―β€˜π΄)) β‰ˆ 𝐴)
 
Theoremfihasheq0 10775 Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin β†’ ((β™―β€˜π΄) = 0 ↔ 𝐴 = βˆ…))
 
Theoremfihashneq0 10776 Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6887. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin β†’ (0 < (β™―β€˜π΄) ↔ 𝐴 β‰  βˆ…))
 
Theoremhashnncl 10777 Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
(𝐴 ∈ Fin β†’ ((β™―β€˜π΄) ∈ β„• ↔ 𝐴 β‰  βˆ…))
 
Theoremhash0 10778 The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)
(β™―β€˜βˆ…) = 0
 
Theoremfihashelne0d 10779 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(πœ‘ β†’ 𝐡 ∈ 𝐴)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    β‡’   (πœ‘ β†’ Β¬ (β™―β€˜π΄) = 0)
 
Theoremhashsng 10780 The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
(𝐴 ∈ 𝑉 β†’ (β™―β€˜{𝐴}) = 1)
 
Theoremfihashen1 10781 A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin β†’ ((β™―β€˜π΄) = 1 ↔ 𝐴 β‰ˆ 1o))
 
Theoremfihashfn 10782 A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.)
((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) β†’ (β™―β€˜πΉ) = (β™―β€˜π΄))
 
Theoremfseq1hash 10783 The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
((𝑁 ∈ β„•0 ∧ 𝐹 Fn (1...𝑁)) β†’ (β™―β€˜πΉ) = 𝑁)
 
Theoremomgadd 10784 Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
𝐺 = frec((π‘₯ ∈ β„€ ↦ (π‘₯ + 1)), 0)    β‡’   ((𝐴 ∈ Ο‰ ∧ 𝐡 ∈ Ο‰) β†’ (πΊβ€˜(𝐴 +o 𝐡)) = ((πΊβ€˜π΄) + (πΊβ€˜π΅)))
 
Theoremfihashdom 10785 Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ ((β™―β€˜π΄) ≀ (β™―β€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
 
Theoremhashunlem 10786 Lemma for hashun 10787. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐡 ∈ Fin)    &   (πœ‘ β†’ (𝐴 ∩ 𝐡) = βˆ…)    &   (πœ‘ β†’ 𝑁 ∈ Ο‰)    &   (πœ‘ β†’ 𝑀 ∈ Ο‰)    &   (πœ‘ β†’ 𝐴 β‰ˆ 𝑁)    &   (πœ‘ β†’ 𝐡 β‰ˆ 𝑀)    β‡’   (πœ‘ β†’ (𝐴 βˆͺ 𝐡) β‰ˆ (𝑁 +o 𝑀))
 
Theoremhashun 10787 The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ (β™―β€˜(𝐴 βˆͺ 𝐡)) = ((β™―β€˜π΄) + (β™―β€˜π΅)))
 
Theorem1elfz0hash 10788 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.)
((𝐴 ∈ Fin ∧ 𝐴 β‰  βˆ…) β†’ 1 ∈ (0...(β™―β€˜π΄)))
 
Theoremhashunsng 10789 The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝐡 ∈ 𝑉 β†’ ((𝐴 ∈ Fin ∧ Β¬ 𝐡 ∈ 𝐴) β†’ (β™―β€˜(𝐴 βˆͺ {𝐡})) = ((β™―β€˜π΄) + 1)))
 
Theoremhashprg 10790 The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 β‰  𝐡 ↔ (β™―β€˜{𝐴, 𝐡}) = 2))
 
Theoremprhash2ex 10791 There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 10797, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.)
(β™―β€˜{0, 1}) = 2
 
Theoremhashp1i 10792 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
𝐴 ∈ Ο‰    &   π΅ = suc 𝐴    &   (β™―β€˜π΄) = 𝑀    &   (𝑀 + 1) = 𝑁    β‡’   (β™―β€˜π΅) = 𝑁
 
Theoremhash1 10793 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(β™―β€˜1o) = 1
 
Theoremhash2 10794 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(β™―β€˜2o) = 2
 
Theoremhash3 10795 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(β™―β€˜3o) = 3
 
Theoremhash4 10796 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(β™―β€˜4o) = 4
 
Theorempr0hash2ex 10797 There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.)
(β™―β€˜{βˆ…, {βˆ…}}) = 2
 
Theoremfihashss 10798 The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ (β™―β€˜π΅) ≀ (β™―β€˜π΄))
 
Theoremfiprsshashgt1 10799 The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
(((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐴 β‰  𝐡) ∧ 𝐢 ∈ Fin) β†’ ({𝐴, 𝐡} βŠ† 𝐢 β†’ 2 ≀ (β™―β€˜πΆ)))
 
Theoremfihashssdif 10800 The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ (β™―β€˜(𝐴 βˆ– 𝐡)) = ((β™―β€˜π΄) βˆ’ (β™―β€˜π΅)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >