![]() |
Intuitionistic Logic Explorer Theorem List (p. 108 of 145) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | facne0 10701 | The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0) | ||
Theorem | facdiv 10702 | A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | ||
Theorem | facndiv 10703 | No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) | ||
Theorem | facwordi 10704 | Ordering property of factorial. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (!‘𝑀) ≤ (!‘𝑁)) | ||
Theorem | faclbnd 10705 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd2 10706 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) | ||
Theorem | faclbnd3 10707 | A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑𝑁) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd6 10708 | Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))) | ||
Theorem | facubnd 10709 | An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁↑𝑁)) | ||
Theorem | facavg 10710 | The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))) | ||
Syntax | cbc 10711 | Extend class notation to include the binomial coefficient operation (combinatorial choose operation). |
class C | ||
Definition | df-bc 10712* |
Define the binomial coefficient operation. For example,
(5C3) = 10 (ex-bc 14137).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | ||
Theorem | bcval 10713 | Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 10714 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) | ||
Theorem | bcval2 10714 | Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | ||
Theorem | bcval3 10715 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | ||
Theorem | bcval4 10716 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) | ||
Theorem | bcrpcl 10717 | Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10732.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) | ||
Theorem | bccmpl 10718 | "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁 − 𝐾))) | ||
Theorem | bcn0 10719 | 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C0) = 1) | ||
Theorem | bc0k 10720 | The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 10719). (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ (𝐾 ∈ ℕ → (0C𝐾) = 0) | ||
Theorem | bcnn 10721 | 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1) | ||
Theorem | bcn1 10722 | Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) | ||
Theorem | bcnp1n 10723 | Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1)) | ||
Theorem | bcm1k 10724 | The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bcp1n 10725 | The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) | ||
Theorem | bcp1nk 10726 | The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1)))) | ||
Theorem | bcval5 10727 | Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁 − 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁 − 𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾))) | ||
Theorem | bcn2 10728 | Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2)) | ||
Theorem | bcp1m1 10729 | Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | ||
Theorem | bcpasc 10730 | Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) | ||
Theorem | bccl 10731 | A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | ||
Theorem | bccl2 10732 | A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | ||
Theorem | bcn2m1 10733 | Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) | ||
Theorem | bcn2p1 10734 | Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) | ||
Theorem | permnn 10735 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | ||
Theorem | bcnm1 10736 | The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | ||
Theorem | 4bc3eq4 10737 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) |
⊢ (4C3) = 4 | ||
Theorem | 4bc2eq6 10738 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ (4C2) = 6 | ||
Syntax | chash 10739 | Extend the definition of a class to include the set size function. |
class ♯ | ||
Definition | df-ihash 10740* |
Define the set size function ♯, which gives the
cardinality of a
finite set as a member of ℕ0,
and assigns all infinite sets the
value +∞. For example, (♯‘{0, 1, 2}) = 3.
Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8529). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets). This definition (in terms of ∪ and ≼) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.) |
⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | ||
Theorem | hashinfuni 10741* | The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) | ||
Theorem | hashinfom 10742 | The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) |
⊢ (ω ≼ 𝐴 → (♯‘𝐴) = +∞) | ||
Theorem | hashennnuni 10743* | The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = 𝑁) | ||
Theorem | hashennn 10744* | The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) | ||
Theorem | hashcl 10745 | Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | ||
Theorem | hashfiv01gt1 10746 | The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | ||
Theorem | hashfz1 10747 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | ||
Theorem | hashen 10748 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
Theorem | hasheqf1o 10749* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
Theorem | fiinfnf1o 10750* | There is no bijection between a finite set and an infinite set. By infnfi 6889 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
Theorem | fihasheqf1oi 10751 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) | ||
Theorem | fihashf1rn 10752 | The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | ||
Theorem | fihasheqf1od 10753 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) | ||
Theorem | fz1eqb 10754 | Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | filtinf 10755 | The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵)) | ||
Theorem | isfinite4im 10756 | A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.) |
⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) | ||
Theorem | fihasheq0 10757 | Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | ||
Theorem | fihashneq0 10758 | Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6879. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
⊢ (𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅)) | ||
Theorem | hashnncl 10759 | Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) | ||
Theorem | hash0 10760 | The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
⊢ (♯‘∅) = 0 | ||
Theorem | fihashelne0d 10761 | A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ¬ (♯‘𝐴) = 0) | ||
Theorem | hashsng 10762 | The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | ||
Theorem | fihashen1 10763 | A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.) |
⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o)) | ||
Theorem | fihashfn 10764 | A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴)) | ||
Theorem | fseq1hash 10765 | The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | omgadd 10766 | Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.) |
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺‘𝐴) + (𝐺‘𝐵))) | ||
Theorem | fihashdom 10767 | Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | ||
Theorem | hashunlem 10768 | Lemma for hashun 10769. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝐴 ≈ 𝑁) & ⊢ (𝜑 → 𝐵 ≈ 𝑀) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ≈ (𝑁 +o 𝑀)) | ||
Theorem | hashun 10769 | The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (♯‘(𝐴 ∪ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | ||
Theorem | 1elfz0hash 10770 | 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴))) | ||
Theorem | hashunsng 10771 | The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1))) | ||
Theorem | hashprg 10772 | The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | ||
Theorem | prhash2ex 10773 | There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 10779, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{0, 1}) = 2 | ||
Theorem | hashp1i 10774 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 = suc 𝐴 & ⊢ (♯‘𝐴) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (♯‘𝐵) = 𝑁 | ||
Theorem | hash1 10775 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘1o) = 1 | ||
Theorem | hash2 10776 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘2o) = 2 | ||
Theorem | hash3 10777 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘3o) = 3 | ||
Theorem | hash4 10778 | Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (♯‘4o) = 4 | ||
Theorem | pr0hash2ex 10779 | There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.) |
⊢ (♯‘{∅, {∅}}) = 2 | ||
Theorem | fihashss 10780 | The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ≤ (♯‘𝐴)) | ||
Theorem | fiprsshashgt1 10781 | The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) | ||
Theorem | fihashssdif 10782 | The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) | ||
Theorem | hashdifsn 10783 | The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1)) | ||
Theorem | hashdifpr 10784 | The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.) |
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2)) | ||
Theorem | hashfz 10785 | Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵 − 𝐴) + 1)) | ||
Theorem | hashfzo 10786 | Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfzo0 10787 | Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵) | ||
Theorem | hashfzp1 10788 | Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | hashfz0 10789 | Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.) |
⊢ (𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1)) | ||
Theorem | hashxp 10790 | The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | ||
Theorem | fimaxq 10791* | A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.) |
⊢ ((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | fiubm 10792* | Lemma for fiubz 10793 and fiubnn 10794. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℚ) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | fiubz 10793* | A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | fiubnn 10794* | A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.) |
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | ||
Theorem | resunimafz0 10795 | The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
⊢ (𝜑 → Fun 𝐼) & ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) ⇒ ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) | ||
Theorem | fnfz0hash 10796 | The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | ffz0hash 10797 | The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1)) | ||
Theorem | ffzo0hash 10798 | The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁) | ||
Theorem | fnfzo0hash 10799 | The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁) | ||
Theorem | hashfacen 10800* | The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐶} ≈ {𝑓 ∣ 𝑓:𝐵–1-1-onto→𝐷}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |