HomeHome Intuitionistic Logic Explorer
Theorem List (p. 108 of 145)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10701-10800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfacne0 10701 The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.)
(𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0)
 
Theoremfacdiv 10702 A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
 
Theoremfacndiv 10703 No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
(((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)
 
Theoremfacwordi 10704 Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
 
Theoremfaclbnd 10705 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
 
Theoremfaclbnd2 10706 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
(𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁))
 
Theoremfaclbnd3 10707 A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ≤ ((𝑀𝑀) · (!‘𝑁)))
 
Theoremfaclbnd6 10708 Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))
 
Theoremfacubnd 10709 An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
(𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁𝑁))
 
Theoremfacavg 10710 The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁)))
 
4.6.9  The binomial coefficient operation
 
Syntaxcbc 10711 Extend class notation to include the binomial coefficient operation (combinatorial choose operation).
class C
 
Definitiondf-bc 10712* Define the binomial coefficient operation. For example, (5C3) = 10 (ex-bc 14137).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘𝑛 does not hold. (Contributed by NM, 10-Jul-2005.)

C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
 
Theorembcval 10713 Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 10714 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
 
Theorembcval2 10714 Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
 
Theorembcval3 10715 Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
 
Theorembcval4 10716 Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
 
Theorembcrpcl 10717 Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10732.) (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
 
Theorembccmpl 10718 "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
 
Theorembcn0 10719 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ ℕ0 → (𝑁C0) = 1)
 
Theorembc0k 10720 The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 10719). (Contributed by Alexander van der Vekens, 1-Jan-2018.)
(𝐾 ∈ ℕ → (0C𝐾) = 0)
 
Theorembcnn 10721 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
 
Theorembcn1 10722 Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
 
Theorembcnp1n 10723 Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
(𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1))
 
Theorembcm1k 10724 The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
 
Theorembcp1n 10725 The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
 
Theorembcp1nk 10726 The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
(𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
 
Theorembcval5 10727 Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
 
Theorembcn2 10728 Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
 
Theorembcp1m1 10729 Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
(𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
 
Theorembcpasc 10730 Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
 
Theorembccl 10731 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
 
Theorembccl2 10732 A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
(𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
 
Theorembcn2m1 10733 Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
(𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
 
Theorembcn2p1 10734 Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
(𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2))
 
Theorempermnn 10735 The number of permutations of 𝑁𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
(𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
 
Theorembcnm1 10736 The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.)
(𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁)
 
Theorem4bc3eq4 10737 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
(4C3) = 4
 
Theorem4bc2eq6 10738 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
(4C2) = 6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 10739 Extend the definition of a class to include the set size function.
class
 
Definitiondf-ihash 10740* Define the set size function , which gives the cardinality of a finite set as a member of 0, and assigns all infinite sets the value +∞. For example, (♯‘{0, 1, 2}) = 3.

Note that we use the sharp sign () for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8529). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of and ) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
 
Theoremhashinfuni 10741* The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
 
Theoremhashinfom 10742 The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → (♯‘𝐴) = +∞)
 
Theoremhashennnuni 10743* The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = 𝑁)
 
Theoremhashennn 10744* The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝑁 ∈ ω ∧ 𝑁𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁))
 
Theoremhashcl 10745 Closure of the function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
(𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
 
Theoremhashfiv01gt1 10746 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
 
Theoremhashfz1 10747 The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
(𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
 
Theoremhashen 10748 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
 
Theoremhasheqf1o 10749* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
 
Theoremfiinfnf1o 10750* There is no bijection between a finite set and an infinite set. By infnfi 6889 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
 
Theoremfihasheqf1oi 10751 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
 
Theoremfihashf1rn 10752 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
 
Theoremfihasheqf1od 10753 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴1-1-onto𝐵)       (𝜑 → (♯‘𝐴) = (♯‘𝐵))
 
Theoremfz1eqb 10754 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁))
 
Theoremfiltinf 10755 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵))
 
Theoremisfinite4im 10756 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
(𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
 
Theoremfihasheq0 10757 Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
 
Theoremfihashneq0 10758 Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6879. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → (0 < (♯‘𝐴) ↔ 𝐴 ≠ ∅))
 
Theoremhashnncl 10759 Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
(𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
 
Theoremhash0 10760 The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)
(♯‘∅) = 0
 
Theoremfihashelne0d 10761 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐵𝐴)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ¬ (♯‘𝐴) = 0)
 
Theoremhashsng 10762 The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
(𝐴𝑉 → (♯‘{𝐴}) = 1)
 
Theoremfihashen1 10763 A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
(𝐴 ∈ Fin → ((♯‘𝐴) = 1 ↔ 𝐴 ≈ 1o))
 
Theoremfihashfn 10764 A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.)
((𝐹 Fn 𝐴𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴))
 
Theoremfseq1hash 10765 The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
 
Theoremomgadd 10766 Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
 
Theoremfihashdom 10767 Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
 
Theoremhashunlem 10768 Lemma for hashun 10769. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑁 ∈ ω)    &   (𝜑𝑀 ∈ ω)    &   (𝜑𝐴𝑁)    &   (𝜑𝐵𝑀)       (𝜑 → (𝐴𝐵) ≈ (𝑁 +o 𝑀))
 
Theoremhashun 10769 The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
 
Theorem1elfz0hash 10770 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.)
((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 1 ∈ (0...(♯‘𝐴)))
 
Theoremhashunsng 10771 The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝐵𝑉 → ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → (♯‘(𝐴 ∪ {𝐵})) = ((♯‘𝐴) + 1)))
 
Theoremhashprg 10772 The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
 
Theoremprhash2ex 10773 There is (at least) one set with two different elements: the unordered pair containing 0 and 1. In contrast to pr0hash2ex 10779, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.)
(♯‘{0, 1}) = 2
 
Theoremhashp1i 10774 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
𝐴 ∈ ω    &   𝐵 = suc 𝐴    &   (♯‘𝐴) = 𝑀    &   (𝑀 + 1) = 𝑁       (♯‘𝐵) = 𝑁
 
Theoremhash1 10775 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘1o) = 1
 
Theoremhash2 10776 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘2o) = 2
 
Theoremhash3 10777 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘3o) = 3
 
Theoremhash4 10778 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
(♯‘4o) = 4
 
Theorempr0hash2ex 10779 There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.)
(♯‘{∅, {∅}}) = 2
 
Theoremfihashss 10780 The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ≤ (♯‘𝐴))
 
Theoremfiprsshashgt1 10781 The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
(((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))
 
Theoremfihashssdif 10782 The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
 
Theoremhashdifsn 10783 The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴 ∖ {𝐵})) = ((♯‘𝐴) − 1))
 
Theoremhashdifpr 10784 The size of the difference of a finite set and a proper ordered pair subset is the set's size minus 2. (Contributed by AV, 16-Dec-2020.)
((𝐴 ∈ Fin ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (♯‘(𝐴 ∖ {𝐵, 𝐶})) = ((♯‘𝐴) − 2))
 
Theoremhashfz 10785 Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
(𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
 
Theoremhashfzo 10786 Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
 
Theoremhashfzo0 10787 Cardinality of a half-open set of integers based at zero. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(𝐵 ∈ ℕ0 → (♯‘(0..^𝐵)) = 𝐵)
 
Theoremhashfzp1 10788 Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
(𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
 
Theoremhashfz0 10789 Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝐵 ∈ ℕ0 → (♯‘(0...𝐵)) = (𝐵 + 1))
 
Theoremhashxp 10790 The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
 
Theoremfimaxq 10791* A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
((𝐴 ⊆ ℚ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
 
Theoremfiubm 10792* Lemma for fiubz 10793 and fiubnn 10794. A general form of those theorems. (Contributed by Jim Kingdon, 29-Oct-2024.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 ⊆ ℚ)    &   (𝜑𝐶𝐵)    &   (𝜑𝐴 ∈ Fin)       (𝜑 → ∃𝑥𝐵𝑦𝐴 𝑦𝑥)
 
Theoremfiubz 10793* A finite set of integers has an upper bound which is an integer. (Contributed by Jim Kingdon, 29-Oct-2024.)
((𝐴 ⊆ ℤ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
 
Theoremfiubnn 10794* A finite set of natural numbers has an upper bound which is a a natural number. (Contributed by Jim Kingdon, 29-Oct-2024.)
((𝐴 ⊆ ℕ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
 
Theoremresunimafz0 10795 The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
(𝜑 → Fun 𝐼)    &   (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)    &   (𝜑𝑁 ∈ (0..^(♯‘𝐹)))       (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
 
Theoremfnfz0hash 10796 The size of a function on a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 25-Jun-2018.)
((𝑁 ∈ ℕ0𝐹 Fn (0...𝑁)) → (♯‘𝐹) = (𝑁 + 1))
 
Theoremffz0hash 10797 The size of a function on a finite set of sequential nonnegative integers equals the upper bound of the sequence increased by 1. (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Proof shortened by AV, 11-Apr-2021.)
((𝑁 ∈ ℕ0𝐹:(0...𝑁)⟶𝐵) → (♯‘𝐹) = (𝑁 + 1))
 
Theoremffzo0hash 10798 The size of a function on a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
((𝑁 ∈ ℕ0𝐹 Fn (0..^𝑁)) → (♯‘𝐹) = 𝑁)
 
Theoremfnfzo0hash 10799 The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Proof shortened by AV, 11-Apr-2021.)
((𝑁 ∈ ℕ0𝐹:(0..^𝑁)⟶𝐵) → (♯‘𝐹) = 𝑁)
 
Theoremhashfacen 10800* The number of bijections between two sets is a cardinal invariant. (Contributed by Mario Carneiro, 21-Jan-2015.)
((𝐴𝐵𝐶𝐷) → {𝑓𝑓:𝐴1-1-onto𝐶} ≈ {𝑓𝑓:𝐵1-1-onto𝐷})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14485
  Copyright terms: Public domain < Previous  Next >