ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval GIF version

Theorem bcval 10841
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 10842 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3566 . . . . 5 (𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 277 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 simpll 527 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
43faccld 10828 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
54nnzd 9447 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℤ)
6 fznn0sub 10132 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
76adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
87faccld 10828 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9 elfznn0 10189 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
1110faccld 10828 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
128, 11nnmulcld 9039 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
13 znq 9698 . . . . 5 (((!‘𝑁) ∈ ℤ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ ℚ)
145, 12, 13syl2anc 411 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ ℚ)
152, 14eqeltrd 2273 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
16 iffalse 3569 . . . . 5 𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = 0)
17 0z 9337 . . . . . 6 0 ∈ ℤ
18 zq 9700 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
1917, 18ax-mp 5 . . . . 5 0 ∈ ℚ
2016, 19eqeltrdi 2287 . . . 4 𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
2120adantl 277 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
22 simpr 110 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
23 0zd 9338 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
24 simpl 109 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℕ0)
2524nn0zd 9446 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
26 fzdcel 10115 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
2722, 23, 25, 26syl3anc 1249 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
28 exmiddc 837 . . . 4 (DECID 𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
2927, 28syl 14 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
3015, 21, 29mpjaodan 799 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
31 oveq2 5930 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
3231eleq2d 2266 . . . 4 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
33 fveq2 5558 . . . . 5 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
34 oveq1 5929 . . . . . . 7 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
3534fveq2d 5562 . . . . . 6 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
3635oveq1d 5937 . . . . 5 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
3733, 36oveq12d 5940 . . . 4 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
3832, 37ifbieq1d 3583 . . 3 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
39 eleq1 2259 . . . 4 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
40 oveq2 5930 . . . . . . 7 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
4140fveq2d 5562 . . . . . 6 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
42 fveq2 5558 . . . . . 6 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
4341, 42oveq12d 5940 . . . . 5 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
4443oveq2d 5938 . . . 4 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4539, 44ifbieq1d 3583 . . 3 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
46 df-bc 10840 . . 3 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
4738, 45, 46ovmpog 6057 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
4830, 47mpd3an3 1349 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  ifcif 3561  cfv 5258  (class class class)co 5922  0cc0 7879   · cmul 7884  cmin 8197   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cq 9693  ...cfz 10083  !cfa 10817  Ccbc 10839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-fz 10084  df-seqfrec 10540  df-fac 10818  df-bc 10840
This theorem is referenced by:  bcval2  10842  bcval3  10843
  Copyright terms: Public domain W3C validator