ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval GIF version

Theorem bcval 10860
Description: Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾𝑁 does not hold. See bcval2 10861 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))

Proof of Theorem bcval
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3567 . . . . 5 (𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 277 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 simpll 527 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
43faccld 10847 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
54nnzd 9466 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℤ)
6 fznn0sub 10151 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
76adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
87faccld 10847 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9 elfznn0 10208 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
1110faccld 10847 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
128, 11nnmulcld 9058 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
13 znq 9717 . . . . 5 (((!‘𝑁) ∈ ℤ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ ℚ)
145, 12, 13syl2anc 411 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) ∈ ℚ)
152, 14eqeltrd 2273 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
16 iffalse 3570 . . . . 5 𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) = 0)
17 0z 9356 . . . . . 6 0 ∈ ℤ
18 zq 9719 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
1917, 18ax-mp 5 . . . . 5 0 ∈ ℚ
2016, 19eqeltrdi 2287 . . . 4 𝐾 ∈ (0...𝑁) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
2120adantl 277 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
22 simpr 110 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
23 0zd 9357 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 0 ∈ ℤ)
24 simpl 109 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℕ0)
2524nn0zd 9465 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
26 fzdcel 10134 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
2722, 23, 25, 26syl3anc 1249 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
28 exmiddc 837 . . . 4 (DECID 𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
2927, 28syl 14 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
3015, 21, 29mpjaodan 799 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ)
31 oveq2 5933 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
3231eleq2d 2266 . . . 4 (𝑛 = 𝑁 → (𝑘 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑁)))
33 fveq2 5561 . . . . 5 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
34 oveq1 5932 . . . . . . 7 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
3534fveq2d 5565 . . . . . 6 (𝑛 = 𝑁 → (!‘(𝑛𝑘)) = (!‘(𝑁𝑘)))
3635oveq1d 5940 . . . . 5 (𝑛 = 𝑁 → ((!‘(𝑛𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝑘)) · (!‘𝑘)))
3733, 36oveq12d 5943 . . . 4 (𝑛 = 𝑁 → ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
3832, 37ifbieq1d 3584 . . 3 (𝑛 = 𝑁 → if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0) = if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0))
39 eleq1 2259 . . . 4 (𝑘 = 𝐾 → (𝑘 ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
40 oveq2 5933 . . . . . . 7 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
4140fveq2d 5565 . . . . . 6 (𝑘 = 𝐾 → (!‘(𝑁𝑘)) = (!‘(𝑁𝐾)))
42 fveq2 5561 . . . . . 6 (𝑘 = 𝐾 → (!‘𝑘) = (!‘𝐾))
4341, 42oveq12d 5943 . . . . 5 (𝑘 = 𝐾 → ((!‘(𝑁𝑘)) · (!‘𝑘)) = ((!‘(𝑁𝐾)) · (!‘𝐾)))
4443oveq2d 5941 . . . 4 (𝑘 = 𝐾 → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4539, 44ifbieq1d 3584 . . 3 (𝑘 = 𝐾 → if(𝑘 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))), 0) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
46 df-bc 10859 . . 3 C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
4738, 45, 46ovmpog 6061 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0) ∈ ℚ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
4830, 47mpd3an3 1349 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))), 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  ifcif 3562  cfv 5259  (class class class)co 5925  0cc0 7898   · cmul 7903  cmin 8216   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  cq 9712  ...cfz 10102  !cfa 10836  Ccbc 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-fz 10103  df-seqfrec 10559  df-fac 10837  df-bc 10859
This theorem is referenced by:  bcval2  10861  bcval3  10862
  Copyright terms: Public domain W3C validator