Detailed syntax breakdown of Definition df-cncf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ccncf 14806 | 
. 2
class
–cn→ | 
| 2 |   | va | 
. . 3
setvar 𝑎 | 
| 3 |   | vb | 
. . 3
setvar 𝑏 | 
| 4 |   | cc 7877 | 
. . . 4
class
ℂ | 
| 5 | 4 | cpw 3605 | 
. . 3
class 𝒫
ℂ | 
| 6 |   | vx | 
. . . . . . . . . . . . 13
setvar 𝑥 | 
| 7 | 6 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑥 | 
| 8 |   | vy | 
. . . . . . . . . . . . 13
setvar 𝑦 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑦 | 
| 10 |   | cmin 8197 | 
. . . . . . . . . . . 12
class 
− | 
| 11 | 7, 9, 10 | co 5922 | 
. . . . . . . . . . 11
class (𝑥 − 𝑦) | 
| 12 |   | cabs 11162 | 
. . . . . . . . . . 11
class
abs | 
| 13 | 11, 12 | cfv 5258 | 
. . . . . . . . . 10
class
(abs‘(𝑥
− 𝑦)) | 
| 14 |   | vd | 
. . . . . . . . . . 11
setvar 𝑑 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . 10
class 𝑑 | 
| 16 |   | clt 8061 | 
. . . . . . . . . 10
class 
< | 
| 17 | 13, 15, 16 | wbr 4033 | 
. . . . . . . . 9
wff
(abs‘(𝑥
− 𝑦)) < 𝑑 | 
| 18 |   | vf | 
. . . . . . . . . . . . . 14
setvar 𝑓 | 
| 19 | 18 | cv 1363 | 
. . . . . . . . . . . . 13
class 𝑓 | 
| 20 | 7, 19 | cfv 5258 | 
. . . . . . . . . . . 12
class (𝑓‘𝑥) | 
| 21 | 9, 19 | cfv 5258 | 
. . . . . . . . . . . 12
class (𝑓‘𝑦) | 
| 22 | 20, 21, 10 | co 5922 | 
. . . . . . . . . . 11
class ((𝑓‘𝑥) − (𝑓‘𝑦)) | 
| 23 | 22, 12 | cfv 5258 | 
. . . . . . . . . 10
class
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) | 
| 24 |   | ve | 
. . . . . . . . . . 11
setvar 𝑒 | 
| 25 | 24 | cv 1363 | 
. . . . . . . . . 10
class 𝑒 | 
| 26 | 23, 25, 16 | wbr 4033 | 
. . . . . . . . 9
wff
(abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒 | 
| 27 | 17, 26 | wi 4 | 
. . . . . . . 8
wff
((abs‘(𝑥
− 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) | 
| 28 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑎 | 
| 29 | 27, 8, 28 | wral 2475 | 
. . . . . . 7
wff
∀𝑦 ∈
𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) | 
| 30 |   | crp 9728 | 
. . . . . . 7
class
ℝ+ | 
| 31 | 29, 14, 30 | wrex 2476 | 
. . . . . 6
wff
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) | 
| 32 | 31, 24, 30 | wral 2475 | 
. . . . 5
wff
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) | 
| 33 | 32, 6, 28 | wral 2475 | 
. . . 4
wff
∀𝑥 ∈
𝑎 ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒) | 
| 34 | 3 | cv 1363 | 
. . . . 5
class 𝑏 | 
| 35 |   | cmap 6707 | 
. . . . 5
class 
↑𝑚 | 
| 36 | 34, 28, 35 | co 5922 | 
. . . 4
class (𝑏 ↑𝑚
𝑎) | 
| 37 | 33, 18, 36 | crab 2479 | 
. . 3
class {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)} | 
| 38 | 2, 3, 5, 5, 37 | cmpo 5924 | 
. 2
class (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑𝑚
𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) | 
| 39 | 1, 38 | wceq 1364 | 
1
wff
–cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑𝑚
𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |