ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfval GIF version

Theorem cncfval 14519
Description: The value of the continuous complex function operation is the set of continuous functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
cncfval ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐴   𝐵,𝑓,𝑤,𝑥,𝑦,𝑧

Proof of Theorem cncfval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7965 . . 3 ℂ ∈ V
21elpw2 4175 . 2 (𝐴 ∈ 𝒫 ℂ ↔ 𝐴 ⊆ ℂ)
31elpw2 4175 . 2 (𝐵 ∈ 𝒫 ℂ ↔ 𝐵 ⊆ ℂ)
4 mapvalg 6684 . . . . . 6 ((𝐵 ∈ 𝒫 ℂ ∧ 𝐴 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) = {𝑓𝑓:𝐴𝐵})
54ancoms 268 . . . . 5 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) = {𝑓𝑓:𝐴𝐵})
6 mapex 6680 . . . . 5 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → {𝑓𝑓:𝐴𝐵} ∈ V)
75, 6eqeltrd 2266 . . . 4 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) ∈ V)
8 rabexg 4161 . . . 4 ((𝐵𝑚 𝐴) ∈ V → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V)
97, 8syl 14 . . 3 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V)
10 oveq2 5904 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑚 𝑎) = (𝑏𝑚 𝐴))
11 raleq 2686 . . . . . . . 8 (𝑎 = 𝐴 → (∀𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1211rexbidv 2491 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1312ralbidv 2490 . . . . . 6 (𝑎 = 𝐴 → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1413raleqbi1dv 2694 . . . . 5 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1510, 14rabeqbidv 2747 . . . 4 (𝑎 = 𝐴 → {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} = {𝑓 ∈ (𝑏𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
16 oveq1 5903 . . . . 5 (𝑏 = 𝐵 → (𝑏𝑚 𝐴) = (𝐵𝑚 𝐴))
1716rabeqdv 2746 . . . 4 (𝑏 = 𝐵 → {𝑓 ∈ (𝑏𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
18 df-cncf 14518 . . . 4 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
1915, 17, 18ovmpog 6031 . . 3 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ ∧ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
209, 19mpd3an3 1349 . 2 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
212, 3, 20syl2anbr 292 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  {crab 2472  Vcvv 2752  wss 3144  𝒫 cpw 3590   class class class wbr 4018  wf 5231  cfv 5235  (class class class)co 5896  𝑚 cmap 6674  cc 7839   < clt 8022  cmin 8158  +crp 9683  abscabs 11038  cnccncf 14517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-map 6676  df-cncf 14518
This theorem is referenced by:  elcncf  14520
  Copyright terms: Public domain W3C validator