ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfval GIF version

Theorem cncfval 15254
Description: The value of the continuous complex function operation is the set of continuous functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
cncfval ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐴   𝐵,𝑓,𝑤,𝑥,𝑦,𝑧

Proof of Theorem cncfval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 8131 . . 3 ℂ ∈ V
21elpw2 4241 . 2 (𝐴 ∈ 𝒫 ℂ ↔ 𝐴 ⊆ ℂ)
31elpw2 4241 . 2 (𝐵 ∈ 𝒫 ℂ ↔ 𝐵 ⊆ ℂ)
4 mapvalg 6813 . . . . . 6 ((𝐵 ∈ 𝒫 ℂ ∧ 𝐴 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) = {𝑓𝑓:𝐴𝐵})
54ancoms 268 . . . . 5 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) = {𝑓𝑓:𝐴𝐵})
6 mapex 6809 . . . . 5 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → {𝑓𝑓:𝐴𝐵} ∈ V)
75, 6eqeltrd 2306 . . . 4 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐵𝑚 𝐴) ∈ V)
8 rabexg 4227 . . . 4 ((𝐵𝑚 𝐴) ∈ V → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V)
97, 8syl 14 . . 3 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V)
10 oveq2 6015 . . . . 5 (𝑎 = 𝐴 → (𝑏𝑚 𝑎) = (𝑏𝑚 𝐴))
11 raleq 2728 . . . . . . . 8 (𝑎 = 𝐴 → (∀𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1211rexbidv 2531 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1312ralbidv 2530 . . . . . 6 (𝑎 = 𝐴 → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1413raleqbi1dv 2740 . . . . 5 (𝑎 = 𝐴 → (∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
1510, 14rabeqbidv 2794 . . . 4 (𝑎 = 𝐴 → {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} = {𝑓 ∈ (𝑏𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
16 oveq1 6014 . . . . 5 (𝑏 = 𝐵 → (𝑏𝑚 𝐴) = (𝐵𝑚 𝐴))
1716rabeqdv 2793 . . . 4 (𝑏 = 𝐵 → {𝑓 ∈ (𝑏𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
18 df-cncf 15253 . . . 4 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
1915, 17, 18ovmpog 6145 . . 3 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ ∧ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)} ∈ V) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
209, 19mpd3an3 1372 . 2 ((𝐴 ∈ 𝒫 ℂ ∧ 𝐵 ∈ 𝒫 ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
212, 3, 20syl2anbr 292 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  wss 3197  𝒫 cpw 3649   class class class wbr 4083  wf 5314  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  cc 8005   < clt 8189  cmin 8325  +crp 9857  abscabs 11516  cnccncf 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-map 6805  df-cncf 15253
This theorem is referenced by:  elcncf  15255
  Copyright terms: Public domain W3C validator