ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfrss2 GIF version

Theorem cncfrss2 14148
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfrss2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)

Proof of Theorem cncfrss2
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cncf 14143 . . 3 cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑎 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
21elmpocl2 6073 . 2 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ∈ 𝒫 ℂ)
32elpwid 3588 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3131  𝒫 cpw 3577   class class class wbr 4005  cfv 5218  (class class class)co 5877  𝑚 cmap 6650  cc 7811   < clt 7994  cmin 8130  +crp 9655  abscabs 11008  cnccncf 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-cncf 14143
This theorem is referenced by:  cncff  14149  cncfi  14150  rescncf  14153  climcncf  14156  cncfco  14163  cnlimci  14227
  Copyright terms: Public domain W3C validator