ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi GIF version

Definition df-fi 7035
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7038). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 7034 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 2763 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1363 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1363 . . . . . . 7 class 𝑦
87cint 3874 . . . . . 6 class 𝑦
95, 8wceq 1364 . . . . 5 wff 𝑧 = 𝑦
102cv 1363 . . . . . . 7 class 𝑥
1110cpw 3605 . . . . . 6 class 𝒫 𝑥
12 cfn 6799 . . . . . 6 class Fin
1311, 12cin 3156 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 2476 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2182 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 4094 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1364 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff set class
This definition is referenced by:  fival  7036
  Copyright terms: Public domain W3C validator