Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fi | GIF version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6949). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 6945 | . 2 class fi | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 2730 | . . 3 class V | |
4 | vz | . . . . . . 7 setvar 𝑧 | |
5 | 4 | cv 1347 | . . . . . 6 class 𝑧 |
6 | vy | . . . . . . . 8 setvar 𝑦 | |
7 | 6 | cv 1347 | . . . . . . 7 class 𝑦 |
8 | 7 | cint 3831 | . . . . . 6 class ∩ 𝑦 |
9 | 5, 8 | wceq 1348 | . . . . 5 wff 𝑧 = ∩ 𝑦 |
10 | 2 | cv 1347 | . . . . . . 7 class 𝑥 |
11 | 10 | cpw 3566 | . . . . . 6 class 𝒫 𝑥 |
12 | cfn 6718 | . . . . . 6 class Fin | |
13 | 11, 12 | cin 3120 | . . . . 5 class (𝒫 𝑥 ∩ Fin) |
14 | 9, 6, 13 | wrex 2449 | . . . 4 wff ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦 |
15 | 14, 4 | cab 2156 | . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
16 | 2, 3, 15 | cmpt 4050 | . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
17 | 1, 16 | wceq 1348 | 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Colors of variables: wff set class |
This definition is referenced by: fival 6947 |
Copyright terms: Public domain | W3C validator |