ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi GIF version

Definition df-fi 7136
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7139). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 7135 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 2799 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1394 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1394 . . . . . . 7 class 𝑦
87cint 3923 . . . . . 6 class 𝑦
95, 8wceq 1395 . . . . 5 wff 𝑧 = 𝑦
102cv 1394 . . . . . . 7 class 𝑥
1110cpw 3649 . . . . . 6 class 𝒫 𝑥
12 cfn 6887 . . . . . 6 class Fin
1311, 12cin 3196 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 2509 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2215 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 4145 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1395 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff set class
This definition is referenced by:  fival  7137
  Copyright terms: Public domain W3C validator