Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fi | GIF version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6937). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 6933 | . 2 class fi | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 2726 | . . 3 class V | |
4 | vz | . . . . . . 7 setvar 𝑧 | |
5 | 4 | cv 1342 | . . . . . 6 class 𝑧 |
6 | vy | . . . . . . . 8 setvar 𝑦 | |
7 | 6 | cv 1342 | . . . . . . 7 class 𝑦 |
8 | 7 | cint 3824 | . . . . . 6 class ∩ 𝑦 |
9 | 5, 8 | wceq 1343 | . . . . 5 wff 𝑧 = ∩ 𝑦 |
10 | 2 | cv 1342 | . . . . . . 7 class 𝑥 |
11 | 10 | cpw 3559 | . . . . . 6 class 𝒫 𝑥 |
12 | cfn 6706 | . . . . . 6 class Fin | |
13 | 11, 12 | cin 3115 | . . . . 5 class (𝒫 𝑥 ∩ Fin) |
14 | 9, 6, 13 | wrex 2445 | . . . 4 wff ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦 |
15 | 14, 4 | cab 2151 | . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
16 | 2, 3, 15 | cmpt 4043 | . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
17 | 1, 16 | wceq 1343 | 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Colors of variables: wff set class |
This definition is referenced by: fival 6935 |
Copyright terms: Public domain | W3C validator |