![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fi | GIF version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6971). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 6967 | . 2 class fi | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 2738 | . . 3 class V | |
4 | vz | . . . . . . 7 setvar 𝑧 | |
5 | 4 | cv 1352 | . . . . . 6 class 𝑧 |
6 | vy | . . . . . . . 8 setvar 𝑦 | |
7 | 6 | cv 1352 | . . . . . . 7 class 𝑦 |
8 | 7 | cint 3845 | . . . . . 6 class ∩ 𝑦 |
9 | 5, 8 | wceq 1353 | . . . . 5 wff 𝑧 = ∩ 𝑦 |
10 | 2 | cv 1352 | . . . . . . 7 class 𝑥 |
11 | 10 | cpw 3576 | . . . . . 6 class 𝒫 𝑥 |
12 | cfn 6740 | . . . . . 6 class Fin | |
13 | 11, 12 | cin 3129 | . . . . 5 class (𝒫 𝑥 ∩ Fin) |
14 | 9, 6, 13 | wrex 2456 | . . . 4 wff ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦 |
15 | 14, 4 | cab 2163 | . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
16 | 2, 3, 15 | cmpt 4065 | . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
17 | 1, 16 | wceq 1353 | 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
Colors of variables: wff set class |
This definition is referenced by: fival 6969 |
Copyright terms: Public domain | W3C validator |