ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi GIF version

Definition df-fi 7097
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7100). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 7096 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 2776 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1372 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1372 . . . . . . 7 class 𝑦
87cint 3899 . . . . . 6 class 𝑦
95, 8wceq 1373 . . . . 5 wff 𝑧 = 𝑦
102cv 1372 . . . . . . 7 class 𝑥
1110cpw 3626 . . . . . 6 class 𝒫 𝑥
12 cfn 6850 . . . . . 6 class Fin
1311, 12cin 3173 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 2487 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2193 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 4121 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1373 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff set class
This definition is referenced by:  fival  7098
  Copyright terms: Public domain W3C validator