ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi GIF version

Definition df-fi 7071
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7074). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 7070 . 2 class fi
2 vx . . 3 setvar 𝑥
3 cvv 2772 . . 3 class V
4 vz . . . . . . 7 setvar 𝑧
54cv 1372 . . . . . 6 class 𝑧
6 vy . . . . . . . 8 setvar 𝑦
76cv 1372 . . . . . . 7 class 𝑦
87cint 3885 . . . . . 6 class 𝑦
95, 8wceq 1373 . . . . 5 wff 𝑧 = 𝑦
102cv 1372 . . . . . . 7 class 𝑥
1110cpw 3616 . . . . . 6 class 𝒫 𝑥
12 cfn 6827 . . . . . 6 class Fin
1311, 12cin 3165 . . . . 5 class (𝒫 𝑥 ∩ Fin)
149, 6, 13wrex 2485 . . . 4 wff 𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦
1514, 4cab 2191 . . 3 class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦}
162, 3, 15cmpt 4105 . 2 class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
171, 16wceq 1373 1 wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
Colors of variables: wff set class
This definition is referenced by:  fival  7072
  Copyright terms: Public domain W3C validator