HomeHome Intuitionistic Logic Explorer
Theorem List (p. 70 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxpen 6901 Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
 
Theoremmapen 6902 Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
((𝐴𝐵𝐶𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
 
Theoremmapdom1g 6903 Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
 
Theoremmapxpen 6904 Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ≈ (𝐴𝑚 (𝐵 × 𝐶)))
 
Theoremxpmapenlem 6905* Lemma for xpmapen 6906. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))    &   𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))    &   𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)       ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
 
Theoremxpmapen 6906 Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
 
Theoremssenen 6907* Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
 
2.6.30  Pigeonhole Principle
 
Theoremphplem1 6908 Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem2 6909 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem3 6910 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6912. (Contributed by NM, 26-May-1998.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem4 6911 Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
 
Theoremphplem3g 6912 A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6910 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremnneneq 6913 Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
 
Theoremphp5 6914 A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
(𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
 
Theoremsnnen2og 6915 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6916. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴𝑉 → ¬ {𝐴} ≈ 2o)
 
Theoremsnnen2oprc 6916 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6915. (Contributed by Jim Kingdon, 1-Sep-2021.)
𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
 
Theorem1nen2 6917 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
¬ 1o ≈ 2o
 
Theoremphplem4dom 6918 Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
 
Theoremphp5dom 6919 A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴 ∈ ω → ¬ suc 𝐴𝐴)
 
Theoremnndomo 6920 Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
 
Theoremphpm 6921* Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols 𝑥𝑥 ∈ (𝐴𝐵) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6908 through phplem4 6911, nneneq 6913, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
 
Theoremphpelm 6922 Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
 
Theoremphplem4on 6923 Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
 
2.6.31  Finite sets
 
Theoremfict 6924 A finite set is dominated by ω. Also see finct 7175. (Contributed by Thierry Arnoux, 27-Mar-2018.)
(𝐴 ∈ Fin → 𝐴 ≼ ω)
 
Theoremfidceq 6925 Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1o or to 2o but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
 
Theoremfidifsnen 6926 All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝑋 ∈ Fin ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
 
Theoremfidifsnid 6927 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3764 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremnnfi 6928 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
(𝐴 ∈ ω → 𝐴 ∈ Fin)
 
Theoremenfi 6929 Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
(𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
 
Theoremenfii 6930 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
 
Theoremssfilem 6931* Lemma for ssfiexmid 6932. (Contributed by Jim Kingdon, 3-Feb-2022.)
{𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin       (𝜑 ∨ ¬ 𝜑)
 
Theoremssfiexmid 6932* If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoreminfiexmid 6933* If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
(𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdomfiexmid 6934* If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdif1en 6935 If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
 
Theoremdif1enen 6936 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝐵)       (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
 
Theoremfiunsnnn 6937 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
 
Theoremphp5fin 6938 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
 
Theoremfisbth 6939 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
Theorem0fin 6940 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
∅ ∈ Fin
 
Theoremfin0 6941* A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
 
Theoremfin0or 6942* A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥𝐴))
 
Theoremdiffitest 6943* If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin       𝜑 ∨ ¬ ¬ 𝜑)
 
Theoremfindcard 6944* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2 6945* Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2s 6946* Variation of findcard2 6945 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2d 6947* Deduction version of findcard2 6945. If you also need 𝑦 ∈ Fin (which doesn't come for free due to ssfiexmid 6932), use findcard2sd 6948 instead. (Contributed by SO, 16-Jul-2018.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremfindcard2sd 6948* Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremdiffisn 6949 Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
 
Theoremdiffifi 6950 Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
 
Theoreminfnfi 6951 An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
 
Theoremominf 6952 The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6821. (Contributed by NM, 2-Jun-1998.)
¬ ω ∈ Fin
 
Theoremisinfinf 6953* An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.)
(ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
 
Theoremac6sfi 6954* Existence of a choice function for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
(𝑦 = (𝑓𝑥) → (𝜑𝜓))       ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
 
Theoremtridc 6955* A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)       (𝜑DECID 𝐵𝑅𝐶)
 
Theoremfimax2gtrilemstep 6956* Lemma for fimax2gtri 6957. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑𝑈 ∈ Fin)    &   (𝜑𝑈𝐴)    &   (𝜑𝑍𝐴)    &   (𝜑𝑉𝐴)    &   (𝜑 → ¬ 𝑉𝑈)    &   (𝜑 → ∀𝑦𝑈 ¬ 𝑍𝑅𝑦)       (𝜑 → ∃𝑥𝐴𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦)
 
Theoremfimax2gtri 6957* A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
(𝜑𝑅 Po 𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
 
Theoremfinexdc 6958* Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
 
Theoremdfrex2fin 6959* Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑))
 
Theoreminfm 6960* An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
(ω ≼ 𝐴 → ∃𝑥 𝑥𝐴)
 
Theoreminfn0 6961 An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
(ω ≼ 𝐴𝐴 ≠ ∅)
 
Theoreminffiexmid 6962* If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
(𝑥 ∈ Fin ∨ ω ≼ 𝑥)       (𝜑 ∨ ¬ 𝜑)
 
Theoremen2eqpr 6963 Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐶 ≈ 2o𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
 
Theoremexmidpw 6964 Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ 𝒫 1o ≈ 2o)
 
Theoremexmidpweq 6965 Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
(EXMID ↔ 𝒫 1o = 2o)
 
Theorempw1fin 6966 Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
(EXMID ↔ 𝒫 1o ∈ Fin)
 
Theorempw1dc0el 6967 Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID ∅ ∈ 𝑥)
 
Theoremexmidpw2en 6968 The power set of a set being equinumerous to set exponentiation with a base of ordinal 2o is equivalent to excluded middle. This is Metamath 100 proof #52. The forward direction uses excluded middle expressed as EXMID to show this equinumerosity.

The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

(EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥))
 
Theoremss1o0el1o 6969 Reformulation of ss1o0el1 4226 using 1o instead of {∅}. (Contributed by BJ, 9-Aug-2024.)
(𝐴 ⊆ 1o → (∅ ∈ 𝐴𝐴 = 1o))
 
Theorempw1dc1 6970 If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
(EXMID ↔ ∀𝑥 ∈ 𝒫 1oDECID 𝑥 = 1o)
 
Theoremfientri3 6971 Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
 
Theoremnnwetri 6972* A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
(𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
 
Theoremonunsnss 6973 Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
 
Theoremunfiexmid 6974* If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremunsnfi 6975 Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
 
Theoremunsnfidcex 6976 The 𝐵𝑉 condition in unsnfi 6975. This is intended to show that unsnfi 6975 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
 
Theoremunsnfidcel 6977 The ¬ 𝐵𝐴 condition in unsnfi 6975. This is intended to show that unsnfi 6975 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
 
Theoremunfidisj 6978 The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ Fin)
 
Theoremundifdcss 6979* Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
(𝐴 = (𝐵 ∪ (𝐴𝐵)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵))
 
Theoremundifdc 6980* Union of complementary parts into whole. This is a case where we can strengthen undifss 3527 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
Theoremundiffi 6981 Union of complementary parts into whole. This is a case where we can strengthen undifss 3527 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
 
Theoremunfiin 6982 The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
 
Theoremprfidisj 6983 A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6868. For the cases where one or both is a proper class, see prprc1 3726, prprc2 3727, or prprc 3728. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
 
Theoremtpfidisj 6984 A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝐵)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
 
Theoremfiintim 6985* If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as 𝑥 and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

(∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
 
Theoremxpfi 6986 The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin)
 
Theorem3xpfi 6987 The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
(𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin)
 
Theoremfisseneq 6988 A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
((𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵) → 𝐴 = 𝐵)
 
Theoremphpeqd 6989 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6921 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremssfirab 6990* A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴 DECID 𝜓)       (𝜑 → {𝑥𝐴𝜓} ∈ Fin)
 
Theoremssfidc 6991* A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → 𝐵 ∈ Fin)
 
Theoremopabfi 6992* Finiteness of an ordered pair abstraction which is a decidable subset of finite sets. (Contributed by Jim Kingdon, 16-Sep-2025.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)}    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑥𝐴𝑦𝐵 DECID 𝜓)       (𝜑𝑆 ∈ Fin)
 
Theoreminfidc 6993* The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝑥𝐵) → (𝐴𝐵) ∈ Fin)
 
Theoremsnon0 6994 An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
 
Theoremfnfi 6995 A version of fnex 5780 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
 
Theoremfundmfi 6996 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
 
Theoremfundmfibi 6997 A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
(Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
 
Theoremresfnfinfinss 6998 The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
((𝐹 Fn 𝐴𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐹𝐵) ∈ Fin)
 
Theoremresidfi 6999 A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.)
(( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin)
 
Theoremrelcnvfi 7000 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >