HomeHome Intuitionistic Logic Explorer
Theorem List (p. 70 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremresfnfinfinss 6901 The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
((𝐹 Fn 𝐴𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐹𝐵) ∈ Fin)
 
Theoremrelcnvfi 6902 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
 
Theoremfunrnfi 6903 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
 
Theoremf1ofi 6904 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ Fin)
 
Theoremf1dmvrnfibi 6905 A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6906. (Contributed by AV, 10-Jan-2020.)
((𝐴𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremf1vrnfibi 6906 A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6905. (Contributed by AV, 10-Jan-2020.)
((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremiunfidisj 6907* The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
 
Theoremf1finf1o 6908 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
 
Theoremen1eqsn 6909 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
 
Theoremen1eqsnbi 6910 A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
(𝐴𝐵 → (𝐵 ≈ 1o𝐵 = {𝐴}))
 
Theoremsnexxph 6911* A case where the antecedent of snexg 4162 is not needed. The class {𝑥𝜑} is from dcextest 4557. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
{{𝑥𝜑}} ∈ V
 
Theorempreimaf1ofi 6912 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐶𝐵)    &   (𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐶 ∈ Fin)       (𝜑 → (𝐹𝐶) ∈ Fin)
 
Theoremfidcenumlemim 6913* Lemma for fidcenum 6917. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
Theoremfidcenumlemrks 6914* Lemma for fidcenum 6917. Induction step for fidcenumlemrk 6915. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐽 ∈ ω)    &   (𝜑 → suc 𝐽𝑁)    &   (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
 
Theoremfidcenumlemrk 6915* Lemma for fidcenum 6917. (Contributed by Jim Kingdon, 20-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝐾𝑁)    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 ∈ (𝐹𝐾) ∨ ¬ 𝑋 ∈ (𝐹𝐾)))
 
Theoremfidcenumlemr 6916* Lemma for fidcenum 6917. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:𝑁onto𝐴)    &   (𝜑𝑁 ∈ ω)       (𝜑𝐴 ∈ Fin)
 
Theoremfidcenum 6917* A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as 𝑛 ∈ ω∃𝑓𝑓:𝑛onto𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛onto𝐴))
 
2.6.32  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 6918* Lemma for isbth 6928. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}        𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
 
Theoremsbthlem2 6919* Lemma for isbth 6928. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
 
Theoremsbthlemi3 6920* Lemma for isbth 6928. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
 
Theoremsbthlemi4 6921* Lemma for isbth 6928. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}       ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
 
Theoremsbthlemi5 6922* Lemma for isbth 6928. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
 
Theoremsbthlemi6 6923* Lemma for isbth 6928. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
 
Theoremsbthlem7 6924* Lemma for isbth 6928. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
 
Theoremsbthlemi8 6925* Lemma for isbth 6928. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
 
Theoremsbthlemi9 6926* Lemma for isbth 6928. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))       ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
 
Theoremsbthlemi10 6927* Lemma for isbth 6928. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}    &   𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))    &   𝐵 ∈ V       ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
Theoremisbth 6928 Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6918 through sbthlemi10 6927; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6927. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13862. (Contributed by NM, 8-Jun-1998.)
((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
2.6.33  Finite intersections
 
Syntaxcfi 6929 Extend class notation with the function whose value is the class of finite intersections of the elements of a given set.
class fi
 
Definitiondf-fi 6930* Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6933). (Contributed by FL, 27-Apr-2008.)
fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
 
Theoremfival 6931* The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
 
Theoremelfi 6932* Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
 
Theoremelfi2 6933* The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
(𝐵𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = 𝑥))
 
Theoremelfir 6934 Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
 
Theoremssfii 6935 Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(𝐴𝑉𝐴 ⊆ (fi‘𝐴))
 
Theoremfi0 6936 The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
(fi‘∅) = ∅
 
Theoremfieq0 6937 A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
 
Theoremfiss 6938 Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
 
Theoremfiuni 6939 The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴𝑉 𝐴 = (fi‘𝐴))
 
Theoremfipwssg 6940 If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐴𝑉𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
 
Theoremfifo 6941* Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)       (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
 
Theoremdcfi 6942* Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝜑) → DECID𝑥𝐴 𝜑)
 
2.6.34  Supremum and infimum
 
Syntaxcsup 6943 Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class sup(𝐴, 𝐵, 𝑅)
 
Syntaxcinf 6944 Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers.
class inf(𝐴, 𝐵, 𝑅)
 
Definitiondf-sup 6945* Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. (Contributed by NM, 22-May-1999.)
sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
 
Definitiondf-inf 6946 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
 
Theoremsupeq1 6947 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
(𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1d 6948 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐵 = 𝐶)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
 
Theoremsupeq1i 6949 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐵 = 𝐶       sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)
 
Theoremsupeq2 6950 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
 
Theoremsupeq3 6951 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
 
Theoremsupeq123d 6952 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
 
Theoremnfsup 6953 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥sup(𝐴, 𝐵, 𝑅)
 
Theoremsupmoti 6954* Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7974) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupeuti 6955* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremsupval2ti 6956* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
 
Theoremeqsupti 6957* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
 
Theoremeqsuptid 6958* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)    &   ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoremsupclti 6959* A supremum belongs to its base class (closure law). See also supubti 6960 and suplubti 6961. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupubti 6960* A supremum is an upper bound. See also supclti 6959 and suplubti 6961.

This proof demonstrates how to expand an iota-based definition (df-iota 5152) using riotacl2 5810.

(Contributed by Jim Kingdon, 24-Nov-2021.)

((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
Theoremsuplubti 6961* A supremum is the least upper bound. See also supclti 6959 and supubti 6960. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsuplub2ti 6962* Bidirectional form of suplubti 6961. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝑅 Or 𝐴)    &   (𝜑𝐵𝐴)       ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
 
Theoremsupelti 6963* Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝐶𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
 
Theoremsup00 6964 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
sup(𝐵, ∅, 𝑅) = ∅
 
Theoremsupmaxti 6965* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoremsupsnti 6966* The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
 
Theoremisotilem 6967* Lemma for isoti 6968. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
 
Theoremisoti 6968* An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
 
Theoremsupisolem 6969* Lemma for supisoti 6971. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)       ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
 
Theoremsupisoex 6970* Lemma for supisoti 6971. (Contributed by Mario Carneiro, 24-Dec-2016.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))       (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
 
Theoremsupisoti 6971* Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
 
Theoreminfeq1 6972 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
Theoreminfeq1d 6973 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
Theoreminfeq1i 6974 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
𝐵 = 𝐶       inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
 
Theoreminfeq2 6975 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
 
Theoreminfeq3 6976 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))
 
Theoreminfeq123d 6977 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))
 
Theoremnfinf 6978 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥inf(𝐴, 𝐵, 𝑅)
 
Theoremcnvinfex 6979* Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
(𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
Theoremcnvti 6980* If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
 
Theoremeqinfti 6981* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
 
Theoremeqinftid 6982* Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)    &   ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoreminfvalti 6983* Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
 
Theoreminfclti 6984* An infimum belongs to its base class (closure law). See also inflbti 6985 and infglbti 6986. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
Theoreminflbti 6985* An infimum is a lower bound. See also infclti 6984 and infglbti 6986. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
 
Theoreminfglbti 6986* An infimum is the greatest lower bound. See also infclti 6984 and inflbti 6985. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
 
Theoreminfnlbti 6987* A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
Theoreminfminti 6988* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
Theoreminfmoti 6989* Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
Theoreminfeuti 6990* An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
Theoreminfsnti 6991* The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
 
Theoreminf00 6992 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
inf(𝐵, ∅, 𝑅) = ∅
 
Theoreminfisoti 6993* Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
 
Theoremsupex2g 6994 Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V)
 
Theoreminfex2g 6995 Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
(𝐴𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V)
 
2.6.35  Ordinal isomorphism
 
Theoremordiso2 6996 Generalize ordiso 6997 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵)
 
Theoremordiso 6997* Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
 
2.6.36  Disjoint union
 
2.6.36.1  Disjoint union
 
Syntaxcdju 6998 Extend class notation to include disjoint union of two classes.
class (𝐴𝐵)
 
Definitiondf-dju 6999 Disjoint union of two classes. This is a way of creating a class which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.)
(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
 
Theoremdjueq12 7000 Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >