HomeHome Intuitionistic Logic Explorer
Theorem List (p. 70 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeuen1 6901 Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
(∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
 
Theoremeuen1b 6902* Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
(𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
 
Theoremen1uniel 6903 A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.)
(𝑆 ≈ 1o 𝑆𝑆)
 
Theorem2dom 6904* A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
(2o𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦)
 
Theoremfundmen 6905 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐹 ∈ V       (Fun 𝐹 → dom 𝐹𝐹)
 
Theoremfundmeng 6906 A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
 
Theoremcnven 6907 A relational set is equinumerous to its converse. (Contributed by Mario Carneiro, 28-Dec-2014.)
((Rel 𝐴𝐴𝑉) → 𝐴𝐴)
 
Theoremcnvct 6908 If a set is dominated by ω, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(𝐴 ≼ ω → 𝐴 ≼ ω)
 
Theoremfndmeng 6909 A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐹 Fn 𝐴𝐴𝐶) → 𝐴𝐹)
 
Theoremmapsnen 6910 Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 {𝐵}) ≈ 𝐴
 
Theoremmap1 6911 Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
(𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)
 
Theoremen2sn 6912 Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
 
Theoremsnfig 6913 A singleton is finite. For the proper class case, see snprc 3699. (Contributed by Jim Kingdon, 13-Apr-2020.)
(𝐴𝑉 → {𝐴} ∈ Fin)
 
Theoremfiprc 6914 The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Fin ∉ V
 
Theoremunen 6915 Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(((𝐴𝐵𝐶𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) ≈ (𝐵𝐷))
 
Theoremen2prd 6916 Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐷𝑌)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → {𝐴, 𝐵} ≈ {𝐶, 𝐷})
 
Theoremrex2dom 6917* A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
 
Theoremenpr2d 6918 A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑 → ¬ 𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐵} ≈ 2o)
 
Theoremen2 6919* A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
(𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
 
Theoremssct 6920 A subset of a set dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 31-Jan-2017.)
((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
 
Theorem1domsn 6921 A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.)
{𝐴} ≼ 1o
 
Theoremenm 6922* A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
 
Theoremxpsnen 6923 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 × {𝐵}) ≈ 𝐴
 
Theoremxpsneng 6924 A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 22-Oct-2004.)
((𝐴𝑉𝐵𝑊) → (𝐴 × {𝐵}) ≈ 𝐴)
 
Theoremxp1en 6925 One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
(𝐴𝑉 → (𝐴 × 1o) ≈ 𝐴)
 
Theoremendisj 6926* Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
𝐴 ∈ V    &   𝐵 ∈ V       𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑥𝑦) = ∅)
 
Theoremxpcomf1o 6927* The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.)
𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})       𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
 
Theoremxpcomco 6928* Composition with the bijection of xpcomf1o 6927 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})    &   𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)       (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
 
Theoremxpcomen 6929 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 5-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)
 
Theoremxpcomeng 6930 Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.)
((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
 
Theoremxpsnen2g 6931 A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)
 
Theoremxpassen 6932 Associative law for equinumerosity of Cartesian product. Proposition 4.22(e) of [Mendelson] p. 254. (Contributed by NM, 22-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴 × 𝐵) × 𝐶) ≈ (𝐴 × (𝐵 × 𝐶))
 
Theoremxpdom2 6933 Dominance law for Cartesian product. Proposition 10.33(2) of [TakeutiZaring] p. 92. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
𝐶 ∈ V       (𝐴𝐵 → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
 
Theoremxpdom2g 6934 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐴𝐵) → (𝐶 × 𝐴) ≼ (𝐶 × 𝐵))
 
Theoremxpdom1g 6935 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐶𝑉𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
 
Theoremxpdom3m 6936* A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
 
Theoremxpdom1 6937 Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by NM, 29-Mar-2006.) (Revised by Mario Carneiro, 7-May-2015.)
𝐶 ∈ V       (𝐴𝐵 → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
 
Theorempw2f1odclem 6938* Lemma for pw2f1odc 6939. (Contributed by Mario Carneiro, 6-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑊)    &   (𝜑𝐵𝐶)    &   (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)       (𝜑 → ((𝑆 ∈ 𝒫 𝐴𝐺 = (𝑧𝐴 ↦ if(𝑧𝑆, 𝐶, 𝐵))) ↔ (𝐺 ∈ ({𝐵, 𝐶} ↑𝑚 𝐴) ∧ 𝑆 = (𝐺 “ {𝐶}))))
 
Theorempw2f1odc 6939* The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of [TakeutiZaring] p. 96. (Contributed by Mario Carneiro, 6-Oct-2014.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑊)    &   (𝜑𝐵𝐶)    &   (𝜑 → ∀𝑝𝐴𝑞 ∈ 𝒫 𝐴DECID 𝑝𝑞)    &   𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑥, 𝐶, 𝐵)))       (𝜑𝐹:𝒫 𝐴1-1-onto→({𝐵, 𝐶} ↑𝑚 𝐴))
 
Theoremfopwdom 6940 Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐹 ∈ V ∧ 𝐹:𝐴onto𝐵) → 𝒫 𝐵 ≼ 𝒫 𝐴)
 
Theorem0domg 6941 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝑉 → ∅ ≼ 𝐴)
 
Theoremdom0 6942 A set dominated by the empty set is empty. (Contributed by NM, 22-Nov-2004.)
(𝐴 ≼ ∅ ↔ 𝐴 = ∅)
 
Theorem0dom 6943 Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐴 ∈ V       ∅ ≼ 𝐴
 
Theoremenen1 6944 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
(𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremenen2 6945 Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremdomen1 6946 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremdomen2 6947 Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
2.6.29  Equinumerosity (cont.)
 
Theoremxpf1o 6948* Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.)
(𝜑 → (𝑥𝐴𝑋):𝐴1-1-onto𝐵)    &   (𝜑 → (𝑦𝐶𝑌):𝐶1-1-onto𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐶 ↦ ⟨𝑋, 𝑌⟩):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷))
 
Theoremxpen 6949 Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
 
Theoremmapen 6950 Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
((𝐴𝐵𝐶𝐷) → (𝐴𝑚 𝐶) ≈ (𝐵𝑚 𝐷))
 
Theoremmapdom1g 6951 Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
((𝐴𝐵𝐶𝑉) → (𝐴𝑚 𝐶) ≼ (𝐵𝑚 𝐶))
 
Theoremmapxpen 6952 Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ≈ (𝐴𝑚 (𝐵 × 𝐶)))
 
Theoremxpmapenlem 6953* Lemma for xpmapen 6954. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   𝐷 = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))    &   𝑅 = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))    &   𝑆 = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)       ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
 
Theoremxpmapen 6954 Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V       ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
 
Theoremssenen 6955* Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
(𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝑥𝐶)} ≈ {𝑥 ∣ (𝑥𝐵𝑥𝐶)})
 
2.6.30  Pigeonhole Principle
 
Theoremphplem1 6956 Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem2 6957 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem3 6958 Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. For a version without the redundant hypotheses, see phplem3g 6960. (Contributed by NM, 26-May-1998.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremphplem4 6959 Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
 
Theoremphplem3g 6960 A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6958 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
Theoremnneneq 6961 Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
 
Theoremphp5 6962 A natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.)
(𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴)
 
Theoremsnnen2og 6963 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6964. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴𝑉 → ¬ {𝐴} ≈ 2o)
 
Theoremsnnen2oprc 6964 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6963. (Contributed by Jim Kingdon, 1-Sep-2021.)
𝐴 ∈ V → ¬ {𝐴} ≈ 2o)
 
Theorem1nen2 6965 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
¬ 1o ≈ 2o
 
Theoremphplem4dom 6966 Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
 
Theoremphp5dom 6967 A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴 ∈ ω → ¬ suc 𝐴𝐴)
 
Theoremnndomo 6968 Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
 
Theoremphpm 6969* Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. By "proper subset" here we mean that there is an element which is in the natural number and not in the subset, or in symbols 𝑥𝑥 ∈ (𝐴𝐵) (which is stronger than not being equal in the absence of excluded middle). Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 6956 through phplem4 6959, nneneq 6961, and this final piece of the proof. (Contributed by NM, 29-May-1998.)
((𝐴 ∈ ω ∧ 𝐵𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴𝐵)) → ¬ 𝐴𝐵)
 
Theoremphpelm 6970 Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
 
Theoremphplem4on 6971 Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
 
2.6.31  Finite sets
 
Theoremfict 6972 A finite set is dominated by ω. Also see finct 7225. (Contributed by Thierry Arnoux, 27-Mar-2018.)
(𝐴 ∈ Fin → 𝐴 ≼ ω)
 
Theoremfidceq 6973 Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1o or to 2o but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
 
Theoremfidifsnen 6974 All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝑋 ∈ Fin ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
 
Theoremfidifsnid 6975 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3781 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theoremnnfi 6976 Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
(𝐴 ∈ ω → 𝐴 ∈ Fin)
 
Theoremenfi 6977 Equinumerous sets have the same finiteness. (Contributed by NM, 22-Aug-2008.)
(𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
 
Theoremenfii 6978 A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
 
Theoremssfilem 6979* Lemma for ssfiexmid 6980. (Contributed by Jim Kingdon, 3-Feb-2022.)
{𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin       (𝜑 ∨ ¬ 𝜑)
 
Theoremssfiexmid 6980* If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoreminfiexmid 6981* If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
(𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdomfiexmid 6982* If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
Theoremdif1en 6983 If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑋𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀)
 
Theoremdif1enen 6984 Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝐵)       (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷}))
 
Theoremfiunsnnn 6985 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
 
Theoremphp5fin 6986 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
 
Theoremfisbth 6987 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
Theorem0fin 6988 The empty set is finite. (Contributed by FL, 14-Jul-2008.)
∅ ∈ Fin
 
Theoremfin0 6989* A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
 
Theoremfin0or 6990* A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥𝐴))
 
Theoremdiffitest 6991* If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin       𝜑 ∨ ¬ ¬ 𝜑)
 
Theoremfindcard 6992* Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))    &   (𝑥 = 𝑦 → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2 6993* Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ Fin → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2s 6994* Variation of findcard2 6993 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))       (𝐴 ∈ Fin → 𝜏)
 
Theoremfindcard2d 6995* Deduction version of findcard2 6993. If you also need 𝑦 ∈ Fin (which doesn't come for free due to ssfiexmid 6980), use findcard2sd 6996 instead. (Contributed by SO, 16-Jul-2018.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremfindcard2sd 6996* Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
Theoremdiffisn 6997 Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
 
Theoremdiffifi 6998 Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
 
Theoreminfnfi 6999 An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
(ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
 
Theoremominf 7000 The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6865. (Contributed by NM, 2-Jun-1998.)
¬ ω ∈ Fin
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >