Home | Intuitionistic Logic Explorer Theorem List (p. 70 of 113) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | enq0ex 6901 | The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
⊢ ~_{Q0} ∈ V | ||
Theorem | nq0ex 6902 | The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
⊢ Q_{0} ∈ V | ||
Theorem | nqnq0 6903 | A positive fraction is a non-negative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
⊢ Q ⊆ Q_{0} | ||
Theorem | nq0nn 6904* | Decomposition of a non-negative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
⊢ (𝐴 ∈ Q_{0} → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~_{Q0} )) | ||
Theorem | addcmpblnq0 6905 | Lemma showing compatibility of addition on non-negative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·_{𝑜} 𝐷) = (𝐵 ·_{𝑜} 𝐶) ∧ (𝐹 ·_{𝑜} 𝑆) = (𝐺 ·_{𝑜} 𝑅)) → ⟨((𝐴 ·_{𝑜} 𝐺) +_{𝑜} (𝐵 ·_{𝑜} 𝐹)), (𝐵 ·_{𝑜} 𝐺)⟩ ~_{Q0} ⟨((𝐶 ·_{𝑜} 𝑆) +_{𝑜} (𝐷 ·_{𝑜} 𝑅)), (𝐷 ·_{𝑜} 𝑆)⟩)) | ||
Theorem | mulcmpblnq0 6906 | Lemma showing compatibility of multiplication on non-negative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·_{𝑜} 𝐷) = (𝐵 ·_{𝑜} 𝐶) ∧ (𝐹 ·_{𝑜} 𝑆) = (𝐺 ·_{𝑜} 𝑅)) → ⟨(𝐴 ·_{𝑜} 𝐹), (𝐵 ·_{𝑜} 𝐺)⟩ ~_{Q0} ⟨(𝐶 ·_{𝑜} 𝑅), (𝐷 ·_{𝑜} 𝑆)⟩)) | ||
Theorem | mulcanenq0ec 6907 | Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ N) → [⟨(𝐴 ·_{𝑜} 𝐵), (𝐴 ·_{𝑜} 𝐶)⟩] ~_{Q0} = [⟨𝐵, 𝐶⟩] ~_{Q0} ) | ||
Theorem | nnnq0lem1 6908* | Decomposing non-negative fractions into natural numbers. Lemma for addnnnq0 6911 and mulnnnq0 6912. (Contributed by Jim Kingdon, 23-Nov-2019.) |
⊢ (((𝐴 ∈ ((ω × N) / ~_{Q0} ) ∧ 𝐵 ∈ ((ω × N) / ~_{Q0} )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~_{Q0} ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ~_{Q0} ) ∧ 𝑧 = [𝐶] ~_{Q0} ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~_{Q0} ∧ 𝐵 = [⟨𝑔, ℎ⟩] ~_{Q0} ) ∧ 𝑞 = [𝐷] ~_{Q0} ))) → ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ (𝑠 ∈ ω ∧ 𝑓 ∈ N)) ∧ ((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧ ((𝑤 ·_{𝑜} 𝑓) = (𝑣 ·_{𝑜} 𝑠) ∧ (𝑢 ·_{𝑜} ℎ) = (𝑡 ·_{𝑜} 𝑔)))) | ||
Theorem | addnq0mo 6909* | There is at most one result from adding non-negative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
⊢ ((𝐴 ∈ ((ω × N) / ~_{Q0} ) ∧ 𝐵 ∈ ((ω × N) / ~_{Q0} )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~_{Q0} ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ~_{Q0} ) ∧ 𝑧 = [⟨((𝑤 ·_{𝑜} 𝑡) +_{𝑜} (𝑣 ·_{𝑜} 𝑢)), (𝑣 ·_{𝑜} 𝑡)⟩] ~_{Q0} )) | ||
Theorem | mulnq0mo 6910* | There is at most one result from multiplying non-negative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
⊢ ((𝐴 ∈ ((ω × N) / ~_{Q0} ) ∧ 𝐵 ∈ ((ω × N) / ~_{Q0} )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~_{Q0} ∧ 𝐵 = [⟨𝑢, 𝑡⟩] ~_{Q0} ) ∧ 𝑧 = [⟨(𝑤 ·_{𝑜} 𝑢), (𝑣 ·_{𝑜} 𝑡)⟩] ~_{Q0} )) | ||
Theorem | addnnnq0 6911 | Addition of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([⟨𝐴, 𝐵⟩] ~_{Q0} +_{Q0} [⟨𝐶, 𝐷⟩] ~_{Q0} ) = [⟨((𝐴 ·_{𝑜} 𝐷) +_{𝑜} (𝐵 ·_{𝑜} 𝐶)), (𝐵 ·_{𝑜} 𝐷)⟩] ~_{Q0} ) | ||
Theorem | mulnnnq0 6912 | Multiplication of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([⟨𝐴, 𝐵⟩] ~_{Q0} ·_{Q0} [⟨𝐶, 𝐷⟩] ~_{Q0} ) = [⟨(𝐴 ·_{𝑜} 𝐶), (𝐵 ·_{𝑜} 𝐷)⟩] ~_{Q0} ) | ||
Theorem | addclnq0 6913 | Closure of addition on non-negative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0}) → (𝐴 +_{Q0} 𝐵) ∈ Q_{0}) | ||
Theorem | mulclnq0 6914 | Closure of multiplication on non-negative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0}) → (𝐴 ·_{Q0} 𝐵) ∈ Q_{0}) | ||
Theorem | nqpnq0nq 6915 | A positive fraction plus a non-negative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q_{0}) → (𝐴 +_{Q0} 𝐵) ∈ Q) | ||
Theorem | nqnq0a 6916 | Addition of positive fractions is equal with +_{Q} or +_{Q0}. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +_{Q} 𝐵) = (𝐴 +_{Q0} 𝐵)) | ||
Theorem | nqnq0m 6917 | Multiplication of positive fractions is equal with ·_{Q} or ·_{Q0}. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·_{Q} 𝐵) = (𝐴 ·_{Q0} 𝐵)) | ||
Theorem | nq0m0r 6918 | Multiplication with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
⊢ (𝐴 ∈ Q_{0} → (0_{Q0} ·_{Q0} 𝐴) = 0_{Q0}) | ||
Theorem | nq0a0 6919 | Addition with zero for non-negative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
⊢ (𝐴 ∈ Q_{0} → (𝐴 +_{Q0} 0_{Q0}) = 𝐴) | ||
Theorem | nnanq0 6920 | Addition of non-negative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [⟨(𝑁 +_{𝑜} 𝑀), 𝐴⟩] ~_{Q0} = ([⟨𝑁, 𝐴⟩] ~_{Q0} +_{Q0} [⟨𝑀, 𝐴⟩] ~_{Q0} )) | ||
Theorem | distrnq0 6921 | Multiplication of non-negative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0} ∧ 𝐶 ∈ Q_{0}) → (𝐴 ·_{Q0} (𝐵 +_{Q0} 𝐶)) = ((𝐴 ·_{Q0} 𝐵) +_{Q0} (𝐴 ·_{Q0} 𝐶))) | ||
Theorem | mulcomnq0 6922 | Multiplication of non-negative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0}) → (𝐴 ·_{Q0} 𝐵) = (𝐵 ·_{Q0} 𝐴)) | ||
Theorem | addassnq0lemcl 6923 | A natural number closure law. Lemma for addassnq0 6924. (Contributed by Jim Kingdon, 3-Dec-2019.) |
⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·_{𝑜} 𝐿) +_{𝑜} (𝐽 ·_{𝑜} 𝐾)) ∈ ω ∧ (𝐽 ·_{𝑜} 𝐿) ∈ N)) | ||
Theorem | addassnq0 6924 | Addition of non-negaative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0} ∧ 𝐶 ∈ Q_{0}) → ((𝐴 +_{Q0} 𝐵) +_{Q0} 𝐶) = (𝐴 +_{Q0} (𝐵 +_{Q0} 𝐶))) | ||
Theorem | distnq0r 6925 | Multiplication of non-negative fractions is distributive. Version of distrnq0 6921 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
⊢ ((𝐴 ∈ Q_{0} ∧ 𝐵 ∈ Q_{0} ∧ 𝐶 ∈ Q_{0}) → ((𝐵 +_{Q0} 𝐶) ·_{Q0} 𝐴) = ((𝐵 ·_{Q0} 𝐴) +_{Q0} (𝐶 ·_{Q0} 𝐴))) | ||
Theorem | addpinq1 6926 | Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
⊢ (𝐴 ∈ N → [⟨(𝐴 +_{N} 1_{𝑜}), 1_{𝑜}⟩] ~_{Q} = ([⟨𝐴, 1_{𝑜}⟩] ~_{Q} +_{Q} 1_{Q})) | ||
Theorem | nq02m 6927 | Multiply a non-negative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
⊢ (𝐴 ∈ Q_{0} → ([⟨2_{𝑜}, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝐴) = (𝐴 +_{Q0} 𝐴)) | ||
Definition | df-inp 6928* |
Define the set of positive reals. A "Dedekind cut" is a partition of
the positive rational numbers into two classes such that all the numbers
of one class are less than all the numbers of the other.
Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers. A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (∃𝑞 ∈ Q𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q𝑟 ∈ 𝑢), rounded (∀𝑞 ∈ Q(𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q(𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ 𝑙)) and likewise for 𝑢), disjoint (∀𝑞 ∈ Q¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢)) and located (∀𝑞 ∈ Q∀𝑟 ∈ Q(𝑞 <_{Q} 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts. (Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.) |
⊢ P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} | ||
Definition | df-i1p 6929* | Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.) |
⊢ 1_{P} = ⟨{𝑙 ∣ 𝑙 <_{Q} 1_{Q}}, {𝑢 ∣ 1_{Q} <_{Q} 𝑢}⟩ | ||
Definition | df-iplp 6930* |
Define addition on positive reals. From Section 11.2.1 of [HoTT], p.
(varies). We write this definition to closely resemble the definition
in HoTT although some of the conditions are redundant (for example,
𝑟
∈ (1^{st} ‘𝑥) implies 𝑟 ∈ Q)
and can be simplified as
shown at genpdf 6970.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.) |
⊢ +_{P} = (𝑥 ∈ P, 𝑦 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1^{st} ‘𝑥) ∧ 𝑠 ∈ (1^{st} ‘𝑦) ∧ 𝑞 = (𝑟 +_{Q} 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2^{nd} ‘𝑥) ∧ 𝑠 ∈ (2^{nd} ‘𝑦) ∧ 𝑞 = (𝑟 +_{Q} 𝑠))}⟩) | ||
Definition | df-imp 6931* |
Define multiplication on positive reals. Here we use a simple
definition which is similar to df-iplp 6930 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
⊢ ·_{P} = (𝑥 ∈ P, 𝑦 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1^{st} ‘𝑥) ∧ 𝑠 ∈ (1^{st} ‘𝑦) ∧ 𝑞 = (𝑟 ·_{Q} 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2^{nd} ‘𝑥) ∧ 𝑠 ∈ (2^{nd} ‘𝑦) ∧ 𝑞 = (𝑟 ·_{Q} 𝑠))}⟩) | ||
Definition | df-iltp 6932* |
Define ordering on positive reals. We define 𝑥<_{P}
𝑦 if there is a
positive fraction 𝑞 which is an element of the upper cut
of 𝑥
and the lower cut of 𝑦. From the definition of < in
Section 11.2.1
of [HoTT], p. (varies).
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
⊢ <_{P} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2^{nd} ‘𝑥) ∧ 𝑞 ∈ (1^{st} ‘𝑦)))} | ||
Theorem | npsspw 6933 | Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
⊢ P ⊆ (𝒫 Q × 𝒫 Q) | ||
Theorem | preqlu 6934 | Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1^{st} ‘𝐴) = (1^{st} ‘𝐵) ∧ (2^{nd} ‘𝐴) = (2^{nd} ‘𝐵)))) | ||
Theorem | npex 6935 | The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) |
⊢ P ∈ V | ||
Theorem | elinp 6936* | Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
⊢ (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | ||
Theorem | prop 6937 | A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.) |
⊢ (𝐴 ∈ P → ⟨(1^{st} ‘𝐴), (2^{nd} ‘𝐴)⟩ ∈ P) | ||
Theorem | elnp1st2nd 6938* | Membership in positive reals, using 1^{st} and 2^{nd} to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.) |
⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1^{st} ‘𝐴) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2^{nd} ‘𝐴))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1^{st} ‘𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ (1^{st} ‘𝐴))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2^{nd} ‘𝐴) ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ (2^{nd} ‘𝐴)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1^{st} ‘𝐴) ∧ 𝑞 ∈ (2^{nd} ‘𝐴)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ (1^{st} ‘𝐴) ∨ 𝑟 ∈ (2^{nd} ‘𝐴)))))) | ||
Theorem | prml 6939* | A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
⊢ (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | ||
Theorem | prmu 6940* | A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
⊢ (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | ||
Theorem | prssnql 6941 | The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
⊢ (⟨𝐿, 𝑈⟩ ∈ P → 𝐿 ⊆ Q) | ||
Theorem | prssnqu 6942 | The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
⊢ (⟨𝐿, 𝑈⟩ ∈ P → 𝑈 ⊆ Q) | ||
Theorem | elprnql 6943 | An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) | ||
Theorem | elprnqu 6944 | An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) | ||
Theorem | 0npr 6945 | The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
⊢ ¬ ∅ ∈ P | ||
Theorem | prcdnql 6946 | A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿) → (𝐶 <_{Q} 𝐵 → 𝐶 ∈ 𝐿)) | ||
Theorem | prcunqu 6947 | An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐶 ∈ 𝑈) → (𝐶 <_{Q} 𝐵 → 𝐵 ∈ 𝑈)) | ||
Theorem | prubl 6948 | A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <_{Q} 𝐶)) | ||
Theorem | prltlu 6949 | An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <_{Q} 𝐶) | ||
Theorem | prnmaxl 6950* | A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝐵 <_{Q} 𝑥) | ||
Theorem | prnminu 6951* | An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑥 <_{Q} 𝐵) | ||
Theorem | prnmaddl 6952* | A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ Q (𝐵 +_{Q} 𝑥) ∈ 𝐿) | ||
Theorem | prloc 6953 | A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 <_{Q} 𝐵) → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) | ||
Theorem | prdisj 6954 | A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) | ||
Theorem | prarloclemlt 6955 | Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → (𝐴 +_{Q} ([⟨(𝑦 +_{𝑜} 1_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) <_{Q} (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃))) | ||
Theorem | prarloclemlo 6956* | Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +_{Q} ([⟨(𝑦 +_{𝑜} 1_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝐿 → (((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} suc 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)))) | ||
Theorem | prarloclemup 6957 | Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 10-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈 → (((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} suc 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)))) | ||
Theorem | prarloclem3step 6958* | Induction step for prarloclem3 6959. (Contributed by Jim Kingdon, 9-Nov-2019.) |
⊢ (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} suc 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem3 6959* | Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 27-Oct-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑋), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{𝑜} 2_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem4 6960* | A slight rearrangement of prarloclem3 6959. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 4-Nov-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑥), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{𝑜} 2_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈))) | ||
Theorem | prarloclemn 6961* | Subtracting two from a positive integer. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 5-Nov-2019.) |
⊢ ((𝑁 ∈ N ∧ 1_{𝑜} <_{N} 𝑁) → ∃𝑥 ∈ ω (2_{𝑜} +_{𝑜} 𝑥) = 𝑁) | ||
Theorem | prarloclem5 6962* | A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 6965. (Contributed by Jim Kingdon, 4-Nov-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1_{𝑜} <_{N} 𝑁) ∧ (𝐴 +_{Q} ([⟨𝑁, 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +_{Q0} ([⟨𝑦, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨((𝑦 +_{𝑜} 2_{𝑜}) +_{𝑜} 𝑥), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclem 6963* | A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +_{Q} (𝑁 ·_{Q} 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1_{𝑜} <_{N} 𝑁) ∧ (𝐴 +_{Q} ([⟨𝑁, 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +_{Q0} ([⟨𝑗, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑃)) ∈ 𝐿 ∧ (𝐴 +_{Q} ([⟨(𝑗 +_{𝑜} 2_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑃)) ∈ 𝑈)) | ||
Theorem | prarloclemcalc 6964 | Some calculations for prarloc 6965. (Contributed by Jim Kingdon, 26-Oct-2019.) |
⊢ (((𝐴 = (𝑋 +_{Q0} ([⟨𝑀, 1_{𝑜}⟩] ~_{Q0} ·_{Q0} 𝑄)) ∧ 𝐵 = (𝑋 +_{Q} ([⟨(𝑀 +_{𝑜} 2_{𝑜}), 1_{𝑜}⟩] ~_{Q} ·_{Q} 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +_{Q} 𝑄) <_{Q} 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 <_{Q} (𝐴 +_{Q} 𝑃)) | ||
Theorem | prarloc 6965* |
A Dedekind cut is arithmetically located. Part of Proposition 11.15 of
[BauerTaylor], p. 52, slightly
modified. It states that given a
tolerance 𝑃, there are elements of the lower and
upper cut which
are within that tolerance of each other.
Usually, proofs will be shorter if they use prarloc2 6966 instead. (Contributed by Jim Kingdon, 22-Oct-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑈 𝑏 <_{Q} (𝑎 +_{Q} 𝑃)) | ||
Theorem | prarloc2 6966* | A Dedekind cut is arithmetically located. This is a variation of prarloc 6965 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.) |
⊢ ((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 (𝑎 +_{Q} 𝑃) ∈ 𝑈) | ||
Theorem | ltrelpr 6967 | Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
⊢ <_{P} ⊆ (P × P) | ||
Theorem | ltdfpr 6968* | More convenient form of df-iltp 6932. (Contributed by Jim Kingdon, 15-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<_{P} 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2^{nd} ‘𝐴) ∧ 𝑞 ∈ (1^{st} ‘𝐵)))) | ||
Theorem | genpdflem 6969* | Simplification of upper or lower cut expression. Lemma for genpdf 6970. (Contributed by Jim Kingdon, 30-Sep-2019.) |
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ Q) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ Q) ⇒ ⊢ (𝜑 → {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞 ∈ Q ∣ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠)}) | ||
Theorem | genpdf 6970* | Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1^{st} ‘𝑤) ∧ 𝑠 ∈ (1^{st} ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2^{nd} ‘𝑤) ∧ 𝑠 ∈ (2^{nd} ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩) ⇒ ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1^{st} ‘𝑤)∃𝑠 ∈ (1^{st} ‘𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2^{nd} ‘𝑤)∃𝑠 ∈ (2^{nd} ‘𝑣)𝑞 = (𝑟𝐺𝑠)}⟩) | ||
Theorem | genipv 6971* | Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = ⟨{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1^{st} ‘𝐴)∃𝑠 ∈ (1^{st} ‘𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2^{nd} ‘𝐴)∃𝑠 ∈ (2^{nd} ‘𝐵)𝑞 = (𝑟𝐺𝑠)}⟩) | ||
Theorem | genplt2i 6972* | Operating on both sides of two inequalities, when the operation is consistent with <_{Q}. (Contributed by Jim Kingdon, 6-Oct-2019.) |
⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 <_{Q} 𝐵 ∧ 𝐶 <_{Q} 𝐷) → (𝐴𝐺𝐶) <_{Q} (𝐵𝐺𝐷)) | ||
Theorem | genpelxp 6973* | Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q)) | ||
Theorem | genpelvl 6974* | Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1^{st} ‘𝐴)∃ℎ ∈ (1^{st} ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
Theorem | genpelvu 6975* | Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2^{nd} ‘𝐴)∃ℎ ∈ (2^{nd} ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
Theorem | genpprecll 6976* | Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1^{st} ‘𝐴) ∧ 𝐷 ∈ (1^{st} ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1^{st} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genppreclu 6977* | Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (2^{nd} ‘𝐴) ∧ 𝐷 ∈ (2^{nd} ‘𝐵)) → (𝐶𝐺𝐷) ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genipdm 6978* | Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ dom 𝐹 = (P × P) | ||
Theorem | genpml 6979* | The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵))) | ||
Theorem | genpmu 6980* | The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵))) | ||
Theorem | genpcdl 6981* | Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1^{st} ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <_{Q} (𝑔𝐺ℎ) → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1^{st} ‘(𝐴𝐹𝐵)) → (𝑥 <_{Q} 𝑓 → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genpcuu 6982* | Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2^{nd} ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) → (𝑓 <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genprndl 6983* | The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1^{st} ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <_{Q} (𝑔𝐺ℎ) → 𝑥 ∈ (1^{st} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑟 ∈ (1^{st} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genprndu 6984* | The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2^{nd} ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <_{Q} 𝑥 → 𝑥 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2^{nd} ‘(𝐴𝐹𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <_{Q} 𝑟 ∧ 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵))))) | ||
Theorem | genpdisj 6985* | The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <_{Q} 𝑦 ↔ (𝑧𝐺𝑥) <_{Q} (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1^{st} ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2^{nd} ‘(𝐴𝐹𝐵)))) | ||
Theorem | genpassl 6986* | Associativity of lower cuts. Lemma for genpassg 6988. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1^{st} ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1^{st} ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
Theorem | genpassu 6987* | Associativity of upper cuts. Lemma for genpassg 6988. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2^{nd} ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2^{nd} ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
Theorem | genpassg 6988* | Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.) |
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1^{st} ‘𝑤) ∧ 𝑧 ∈ (1^{st} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2^{nd} ‘𝑤) ∧ 𝑧 ∈ (2^{nd} ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) | ||
Theorem | addnqprllem 6989 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐺 ∈ 𝐿) ∧ 𝑋 ∈ Q) → (𝑋 <_{Q} 𝑆 → ((𝑋 ·_{Q} (*_{Q}‘𝑆)) ·_{Q} 𝐺) ∈ 𝐿)) | ||
Theorem | addnqprulem 6990 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (((⟨𝐿, 𝑈⟩ ∈ P ∧ 𝐺 ∈ 𝑈) ∧ 𝑋 ∈ Q) → (𝑆 <_{Q} 𝑋 → ((𝑋 ·_{Q} (*_{Q}‘𝑆)) ·_{Q} 𝐺) ∈ 𝑈)) | ||
Theorem | addnqprl 6991 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (1^{st} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (1^{st} ‘𝐵))) ∧ 𝑋 ∈ Q) → (𝑋 <_{Q} (𝐺 +_{Q} 𝐻) → 𝑋 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addnqpru 6992 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (2^{nd} ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (2^{nd} ‘𝐵))) ∧ 𝑋 ∈ Q) → ((𝐺 +_{Q} 𝐻) <_{Q} 𝑋 → 𝑋 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemlt 6993 | Lemma for addlocpr 6998. The 𝑄 <_{Q} (𝐷 +_{Q} 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 <_{Q} (𝐷 +_{Q} 𝐸) → 𝑄 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemeqgt 6994 | Lemma for addlocpr 6998. This is a step used in both the 𝑄 = (𝐷 +_{Q} 𝐸) and (𝐷 +_{Q} 𝐸) <_{Q} 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑈 +_{Q} 𝑇) <_{Q} ((𝐷 +_{Q} 𝐸) +_{Q} (𝑃 +_{Q} 𝑃))) | ||
Theorem | addlocprlemeq 6995 | Lemma for addlocpr 6998. The 𝑄 = (𝐷 +_{Q} 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 = (𝐷 +_{Q} 𝐸) → 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlemgt 6996 | Lemma for addlocpr 6998. The (𝐷 +_{Q} 𝐸) <_{Q} 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → ((𝐷 +_{Q} 𝐸) <_{Q} 𝑄 → 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocprlem 6997 | Lemma for addlocpr 6998. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <_{Q} 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +_{Q} (𝑃 +_{Q} 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1^{st} ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2^{nd} ‘𝐴)) & ⊢ (𝜑 → 𝑈 <_{Q} (𝐷 +_{Q} 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1^{st} ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2^{nd} ‘𝐵)) & ⊢ (𝜑 → 𝑇 <_{Q} (𝐸 +_{Q} 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)) ∨ 𝑅 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵)))) | ||
Theorem | addlocpr 6998* | Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 6965 to both 𝐴 and 𝐵, and uses nqtri3or 6858 rather than prloc 6953 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +_{P} 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <_{Q} 𝑟 → (𝑞 ∈ (1^{st} ‘(𝐴 +_{P} 𝐵)) ∨ 𝑟 ∈ (2^{nd} ‘(𝐴 +_{P} 𝐵))))) | ||
Theorem | addclpr 6999 | Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +_{P} 𝐵) ∈ P) | ||
Theorem | plpvlu 7000* | Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +_{P} 𝐵) = ⟨{𝑥 ∈ Q ∣ ∃𝑦 ∈ (1^{st} ‘𝐴)∃𝑧 ∈ (1^{st} ‘𝐵)𝑥 = (𝑦 +_{Q} 𝑧)}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ (2^{nd} ‘𝐴)∃𝑧 ∈ (2^{nd} ‘𝐵)𝑥 = (𝑦 +_{Q} 𝑧)}⟩) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |