HomeHome Intuitionistic Logic Explorer
Theorem List (p. 70 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6901-7000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtridc 6901* A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
(πœ‘ β†’ 𝑅 Po 𝐴)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦𝑅π‘₯))    &   (πœ‘ β†’ 𝐡 ∈ 𝐴)    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    β‡’   (πœ‘ β†’ DECID 𝐡𝑅𝐢)
 
Theoremfimax2gtrilemstep 6902* Lemma for fimax2gtri 6903. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.)
(πœ‘ β†’ 𝑅 Po 𝐴)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦𝑅π‘₯))    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐴 β‰  βˆ…)    &   (πœ‘ β†’ π‘ˆ ∈ Fin)    &   (πœ‘ β†’ π‘ˆ βŠ† 𝐴)    &   (πœ‘ β†’ 𝑍 ∈ 𝐴)    &   (πœ‘ β†’ 𝑉 ∈ 𝐴)    &   (πœ‘ β†’ Β¬ 𝑉 ∈ π‘ˆ)    &   (πœ‘ β†’ βˆ€π‘¦ ∈ π‘ˆ Β¬ 𝑍𝑅𝑦)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ (π‘ˆ βˆͺ {𝑉}) Β¬ π‘₯𝑅𝑦)
 
Theoremfimax2gtri 6903* A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.)
(πœ‘ β†’ 𝑅 Po 𝐴)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯𝑅𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦𝑅π‘₯))    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐴 β‰  βˆ…)    β‡’   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯𝑅𝑦)
 
Theoremfinexdc 6904* Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
((𝐴 ∈ Fin ∧ βˆ€π‘₯ ∈ 𝐴 DECID πœ‘) β†’ DECID βˆƒπ‘₯ ∈ 𝐴 πœ‘)
 
Theoremdfrex2fin 6905* Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.)
((𝐴 ∈ Fin ∧ βˆ€π‘₯ ∈ 𝐴 DECID πœ‘) β†’ (βˆƒπ‘₯ ∈ 𝐴 πœ‘ ↔ Β¬ βˆ€π‘₯ ∈ 𝐴 Β¬ πœ‘))
 
Theoreminfm 6906* An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.)
(Ο‰ β‰Ό 𝐴 β†’ βˆƒπ‘₯ π‘₯ ∈ 𝐴)
 
Theoreminfn0 6907 An infinite set is not empty. (Contributed by NM, 23-Oct-2004.)
(Ο‰ β‰Ό 𝐴 β†’ 𝐴 β‰  βˆ…)
 
Theoreminffiexmid 6908* If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.)
(π‘₯ ∈ Fin ∨ Ο‰ β‰Ό π‘₯)    β‡’   (πœ‘ ∨ Β¬ πœ‘)
 
Theoremen2eqpr 6909 Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐢 β‰ˆ 2o ∧ 𝐴 ∈ 𝐢 ∧ 𝐡 ∈ 𝐢) β†’ (𝐴 β‰  𝐡 β†’ 𝐢 = {𝐴, 𝐡}))
 
Theoremexmidpw 6910 Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
(EXMID ↔ 𝒫 1o β‰ˆ 2o)
 
Theoremexmidpweq 6911 Excluded middle is equivalent to the power set of 1o being 2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
(EXMID ↔ 𝒫 1o = 2o)
 
Theorempw1fin 6912 Excluded middle is equivalent to the power set of 1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
(EXMID ↔ 𝒫 1o ∈ Fin)
 
Theorempw1dc0el 6913 Another equivalent of excluded middle, which is a mere reformulation of the definition. (Contributed by BJ, 9-Aug-2024.)
(EXMID ↔ βˆ€π‘₯ ∈ 𝒫 1oDECID βˆ… ∈ π‘₯)
 
Theoremss1o0el1o 6914 Reformulation of ss1o0el1 4199 using 1o instead of {βˆ…}. (Contributed by BJ, 9-Aug-2024.)
(𝐴 βŠ† 1o β†’ (βˆ… ∈ 𝐴 ↔ 𝐴 = 1o))
 
Theorempw1dc1 6915 If, in the set of truth values (the powerset of 1o), equality to 1o is decidable, then excluded middle holds (and conversely). (Contributed by BJ and Jim Kingdon, 8-Aug-2024.)
(EXMID ↔ βˆ€π‘₯ ∈ 𝒫 1oDECID π‘₯ = 1o)
 
Theoremfientri3 6916 Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ (𝐴 β‰Ό 𝐡 ∨ 𝐡 β‰Ό 𝐴))
 
Theoremnnwetri 6917* A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
(𝐴 ∈ Ο‰ β†’ ( E We 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ E 𝑦 ∨ π‘₯ = 𝑦 ∨ 𝑦 E π‘₯)))
 
Theoremonunsnss 6918 Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐡 ∈ 𝑉 ∧ (𝐴 βˆͺ {𝐡}) ∈ On) β†’ 𝐡 βŠ† 𝐴)
 
Theoremunfiexmid 6919* If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.)
((π‘₯ ∈ Fin ∧ 𝑦 ∈ Fin) β†’ (π‘₯ βˆͺ 𝑦) ∈ Fin)    β‡’   (πœ‘ ∨ Β¬ πœ‘)
 
Theoremunsnfi 6920 Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ 𝑉 ∧ Β¬ 𝐡 ∈ 𝐴) β†’ (𝐴 βˆͺ {𝐡}) ∈ Fin)
 
Theoremunsnfidcex 6921 The 𝐡 ∈ 𝑉 condition in unsnfi 6920. This is intended to show that unsnfi 6920 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ Β¬ 𝐡 ∈ 𝐴 ∧ (𝐴 βˆͺ {𝐡}) ∈ Fin) β†’ DECID Β¬ 𝐡 ∈ V)
 
Theoremunsnfidcel 6922 The Β¬ 𝐡 ∈ 𝐴 condition in unsnfi 6920. This is intended to show that unsnfi 6920 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ 𝑉 ∧ (𝐴 βˆͺ {𝐡}) ∈ Fin) β†’ DECID Β¬ 𝐡 ∈ 𝐴)
 
Theoremunfidisj 6923 The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ (𝐴 ∩ 𝐡) = βˆ…) β†’ (𝐴 βˆͺ 𝐡) ∈ Fin)
 
Theoremundifdcss 6924* Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
(𝐴 = (𝐡 βˆͺ (𝐴 βˆ– 𝐡)) ↔ (𝐡 βŠ† 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 DECID π‘₯ ∈ 𝐡))
 
Theoremundifdc 6925* Union of complementary parts into whole. This is a case where we can strengthen undifss 3505 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.)
((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 ∧ 𝐡 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ 𝐴 = (𝐡 βˆͺ (𝐴 βˆ– 𝐡)))
 
Theoremundiffi 6926 Union of complementary parts into whole. This is a case where we can strengthen undifss 3505 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ 𝐴 = (𝐡 βˆͺ (𝐴 βˆ– 𝐡)))
 
Theoremunfiin 6927 The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin ∧ (𝐴 ∩ 𝐡) ∈ Fin) β†’ (𝐴 βˆͺ 𝐡) ∈ Fin)
 
Theoremprfidisj 6928 A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐡, see snfig 6816. For the cases where one or both is a proper class, see prprc1 3702, prprc2 3703, or prprc 3704. (Contributed by Jim Kingdon, 31-May-2022.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š ∧ 𝐴 β‰  𝐡) β†’ {𝐴, 𝐡} ∈ Fin)
 
Theoremtpfidisj 6929 A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐢 ∈ 𝑋)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ 𝐴 β‰  𝐢)    &   (πœ‘ β†’ 𝐡 β‰  𝐢)    β‡’   (πœ‘ β†’ {𝐴, 𝐡, 𝐢} ∈ Fin)
 
Theoremfiintim 6930* If a class is closed under pairwise intersections, then it is closed under nonempty finite intersections. The converse would appear to require an additional condition, such as π‘₯ and 𝑦 not being equal, or 𝐴 having decidable equality.

This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.)

(βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ∩ 𝑦) ∈ 𝐴 β†’ βˆ€π‘₯((π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰  βˆ… ∧ π‘₯ ∈ Fin) β†’ ∩ π‘₯ ∈ 𝐴))
 
Theoremxpfi 6931 The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
((𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ (𝐴 Γ— 𝐡) ∈ Fin)
 
Theorem3xpfi 6932 The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
(𝑉 ∈ Fin β†’ ((𝑉 Γ— 𝑉) Γ— 𝑉) ∈ Fin)
 
Theoremfisseneq 6933 A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
((𝐡 ∈ Fin ∧ 𝐴 βŠ† 𝐡 ∧ 𝐴 β‰ˆ 𝐡) β†’ 𝐴 = 𝐡)
 
Theoremphpeqd 6934 Corollary of the Pigeonhole Principle using equality. Strengthening of phpm 6867 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐴)    &   (πœ‘ β†’ 𝐴 β‰ˆ 𝐡)    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremssfirab 6935* A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 DECID πœ“)    β‡’   (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ πœ“} ∈ Fin)
 
Theoremssfidc 6936* A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.)
((𝐴 ∈ Fin ∧ 𝐡 βŠ† 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 DECID π‘₯ ∈ 𝐡) β†’ 𝐡 ∈ Fin)
 
Theoremsnon0 6937 An ordinal which is a singleton is {βˆ…}. (Contributed by Jim Kingdon, 19-Oct-2021.)
((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) β†’ 𝐴 = βˆ…)
 
Theoremfnfi 6938 A version of fnex 5740 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) β†’ 𝐹 ∈ Fin)
 
Theoremfundmfi 6939 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
((𝐴 ∈ Fin ∧ Fun 𝐴) β†’ dom 𝐴 ∈ Fin)
 
Theoremfundmfibi 6940 A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
(Fun 𝐹 β†’ (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
 
Theoremresfnfinfinss 6941 The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.)
((𝐹 Fn 𝐴 ∧ 𝐡 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ (𝐹 β†Ύ 𝐡) ∈ Fin)
 
Theoremrelcnvfi 6942 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ 𝐴 ∈ Fin) β†’ ◑𝐴 ∈ Fin)
 
Theoremfunrnfi 6943 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun ◑𝐴 ∧ 𝐴 ∈ Fin) β†’ ran 𝐴 ∈ Fin)
 
Theoremf1ofi 6944 If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐡) β†’ 𝐡 ∈ Fin)
 
Theoremf1dmvrnfibi 6945 A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6946. (Contributed by AV, 10-Jan-2020.)
((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐡) β†’ (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremf1vrnfibi 6946 A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6945. (Contributed by AV, 10-Jan-2020.)
((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐡) β†’ (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
 
Theoremiunfidisj 6947* The finite union of disjoint finite sets is finite. Note that 𝐡 depends on π‘₯, i.e. can be thought of as 𝐡(π‘₯). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
((𝐴 ∈ Fin ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ Fin ∧ Disj π‘₯ ∈ 𝐴 𝐡) β†’ βˆͺ π‘₯ ∈ 𝐴 𝐡 ∈ Fin)
 
Theoremf1finf1o 6948 Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.)
((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) β†’ (𝐹:𝐴–1-1→𝐡 ↔ 𝐹:𝐴–1-1-onto→𝐡))
 
Theoremen1eqsn 6949 A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
((𝐴 ∈ 𝐡 ∧ 𝐡 β‰ˆ 1o) β†’ 𝐡 = {𝐴})
 
Theoremen1eqsnbi 6950 A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
(𝐴 ∈ 𝐡 β†’ (𝐡 β‰ˆ 1o ↔ 𝐡 = {𝐴}))
 
Theoremsnexxph 6951* A case where the antecedent of snexg 4186 is not needed. The class {π‘₯ ∣ πœ‘} is from dcextest 4582. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
{{π‘₯ ∣ πœ‘}} ∈ V
 
Theorempreimaf1ofi 6952 The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
(πœ‘ β†’ 𝐢 βŠ† 𝐡)    &   (πœ‘ β†’ 𝐹:𝐴–1-1-onto→𝐡)    &   (πœ‘ β†’ 𝐢 ∈ Fin)    β‡’   (πœ‘ β†’ (◑𝐹 β€œ 𝐢) ∈ Fin)
 
Theoremfidcenumlemim 6953* Lemma for fidcenum 6957. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 ∧ βˆƒπ‘› ∈ Ο‰ βˆƒπ‘“ 𝑓:𝑛–onto→𝐴))
 
Theoremfidcenumlemrks 6954* Lemma for fidcenum 6957. Induction step for fidcenumlemrk 6955. (Contributed by Jim Kingdon, 20-Oct-2022.)
(πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)    &   (πœ‘ β†’ 𝐹:𝑁–onto→𝐴)    &   (πœ‘ β†’ 𝐽 ∈ Ο‰)    &   (πœ‘ β†’ suc 𝐽 βŠ† 𝑁)    &   (πœ‘ β†’ (𝑋 ∈ (𝐹 β€œ 𝐽) ∨ Β¬ 𝑋 ∈ (𝐹 β€œ 𝐽)))    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∈ (𝐹 β€œ suc 𝐽) ∨ Β¬ 𝑋 ∈ (𝐹 β€œ suc 𝐽)))
 
Theoremfidcenumlemrk 6955* Lemma for fidcenum 6957. (Contributed by Jim Kingdon, 20-Oct-2022.)
(πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)    &   (πœ‘ β†’ 𝐹:𝑁–onto→𝐴)    &   (πœ‘ β†’ 𝐾 ∈ Ο‰)    &   (πœ‘ β†’ 𝐾 βŠ† 𝑁)    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∈ (𝐹 β€œ 𝐾) ∨ Β¬ 𝑋 ∈ (𝐹 β€œ 𝐾)))
 
Theoremfidcenumlemr 6956* Lemma for fidcenum 6957. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.)
(πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦)    &   (πœ‘ β†’ 𝐹:𝑁–onto→𝐴)    &   (πœ‘ β†’ 𝑁 ∈ Ο‰)    β‡’   (πœ‘ β†’ 𝐴 ∈ Fin)
 
Theoremfidcenum 6957* A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as βˆƒπ‘› ∈ Ο‰βˆƒπ‘“π‘“:𝑛–onto→𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.)
(𝐴 ∈ Fin ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 DECID π‘₯ = 𝑦 ∧ βˆƒπ‘› ∈ Ο‰ βˆƒπ‘“ 𝑓:𝑛–onto→𝐴))
 
2.6.32  Schroeder-Bernstein Theorem
 
Theoremsbthlem1 6958* Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    β‡’   βˆͺ 𝐷 βŠ† (𝐴 βˆ– (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ βˆͺ 𝐷))))
 
Theoremsbthlem2 6959* Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    β‡’   (ran 𝑔 βŠ† 𝐴 β†’ (𝐴 βˆ– (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ βˆͺ 𝐷)))) βŠ† βˆͺ 𝐷)
 
Theoremsbthlemi3 6960* Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    β‡’   ((EXMID ∧ ran 𝑔 βŠ† 𝐴) β†’ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ βˆͺ 𝐷))) = (𝐴 βˆ– βˆͺ 𝐷))
 
Theoremsbthlemi4 6961* Lemma for isbth 6968. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    β‡’   ((EXMID ∧ (dom 𝑔 = 𝐡 ∧ ran 𝑔 βŠ† 𝐴) ∧ Fun ◑𝑔) β†’ (◑𝑔 β€œ (𝐴 βˆ– βˆͺ 𝐷)) = (𝐡 βˆ– (𝑓 β€œ βˆͺ 𝐷)))
 
Theoremsbthlemi5 6962* Lemma for isbth 6968. (Contributed by NM, 22-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    β‡’   ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 βŠ† 𝐴)) β†’ dom 𝐻 = 𝐴)
 
Theoremsbthlemi6 6963* Lemma for isbth 6968. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    β‡’   (((EXMID ∧ ran 𝑓 βŠ† 𝐡) ∧ ((dom 𝑔 = 𝐡 ∧ ran 𝑔 βŠ† 𝐴) ∧ Fun ◑𝑔)) β†’ ran 𝐻 = 𝐡)
 
Theoremsbthlem7 6964* Lemma for isbth 6968. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    β‡’   ((Fun 𝑓 ∧ Fun ◑𝑔) β†’ Fun 𝐻)
 
Theoremsbthlemi8 6965* Lemma for isbth 6968. (Contributed by NM, 27-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    β‡’   (((EXMID ∧ Fun ◑𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐡) ∧ ran 𝑔 βŠ† 𝐴) ∧ Fun ◑𝑔)) β†’ Fun ◑𝐻)
 
Theoremsbthlemi9 6966* Lemma for isbth 6968. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    β‡’   ((EXMID ∧ 𝑓:𝐴–1-1→𝐡 ∧ 𝑔:𝐡–1-1→𝐴) β†’ 𝐻:𝐴–1-1-onto→𝐡)
 
Theoremsbthlemi10 6967* Lemma for isbth 6968. (Contributed by NM, 28-Mar-1998.)
𝐴 ∈ V    &   π· = {π‘₯ ∣ (π‘₯ βŠ† 𝐴 ∧ (𝑔 β€œ (𝐡 βˆ– (𝑓 β€œ π‘₯))) βŠ† (𝐴 βˆ– π‘₯))}    &   π» = ((𝑓 β†Ύ βˆͺ 𝐷) βˆͺ (◑𝑔 β†Ύ (𝐴 βˆ– βˆͺ 𝐷)))    &   π΅ ∈ V    β‡’   ((EXMID ∧ (𝐴 β‰Ό 𝐡 ∧ 𝐡 β‰Ό 𝐴)) β†’ 𝐴 β‰ˆ 𝐡)
 
Theoremisbth 6968 Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐡 and vice-versa, then 𝐴 and 𝐡 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6958 through sbthlemi10 6967; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6967. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 14856. (Contributed by NM, 8-Jun-1998.)
((EXMID ∧ (𝐴 β‰Ό 𝐡 ∧ 𝐡 β‰Ό 𝐴)) β†’ 𝐴 β‰ˆ 𝐡)
 
2.6.33  Finite intersections
 
Syntaxcfi 6969 Extend class notation with the function whose value is the class of finite intersections of the elements of a given set.
class fi
 
Definitiondf-fi 6970* Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6973). (Contributed by FL, 27-Apr-2008.)
fi = (π‘₯ ∈ V ↦ {𝑧 ∣ βˆƒπ‘¦ ∈ (𝒫 π‘₯ ∩ Fin)𝑧 = ∩ 𝑦})
 
Theoremfival 6971* The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴 ∈ 𝑉 β†’ (fiβ€˜π΄) = {𝑦 ∣ βˆƒπ‘₯ ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ π‘₯})
 
Theoremelfi 6972* Specific properties of an element of (fiβ€˜π΅). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 ∈ (fiβ€˜π΅) ↔ βˆƒπ‘₯ ∈ (𝒫 𝐡 ∩ Fin)𝐴 = ∩ π‘₯))
 
Theoremelfi2 6973* The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
(𝐡 ∈ 𝑉 β†’ (𝐴 ∈ (fiβ€˜π΅) ↔ βˆƒπ‘₯ ∈ ((𝒫 𝐡 ∩ Fin) βˆ– {βˆ…})𝐴 = ∩ π‘₯))
 
Theoremelfir 6974 Sufficient condition for an element of (fiβ€˜π΅). (Contributed by Mario Carneiro, 24-Nov-2013.)
((𝐡 ∈ 𝑉 ∧ (𝐴 βŠ† 𝐡 ∧ 𝐴 β‰  βˆ… ∧ 𝐴 ∈ Fin)) β†’ ∩ 𝐴 ∈ (fiβ€˜π΅))
 
Theoremssfii 6975 Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(𝐴 ∈ 𝑉 β†’ 𝐴 βŠ† (fiβ€˜π΄))
 
Theoremfi0 6976 The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
(fiβ€˜βˆ…) = βˆ…
 
Theoremfieq0 6977 A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴 ∈ 𝑉 β†’ (𝐴 = βˆ… ↔ (fiβ€˜π΄) = βˆ…))
 
Theoremfiss 6978 Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
((𝐡 ∈ 𝑉 ∧ 𝐴 βŠ† 𝐡) β†’ (fiβ€˜π΄) βŠ† (fiβ€˜π΅))
 
Theoremfiuni 6979 The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
(𝐴 ∈ 𝑉 β†’ βˆͺ 𝐴 = βˆͺ (fiβ€˜π΄))
 
Theoremfipwssg 6980 If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐴 βŠ† 𝒫 𝑋) β†’ (fiβ€˜π΄) βŠ† 𝒫 𝑋)
 
Theoremfifo 6981* Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) βˆ– {βˆ…}) ↦ ∩ 𝑦)    β‡’   (𝐴 ∈ 𝑉 β†’ 𝐹:((𝒫 𝐴 ∩ Fin) βˆ– {βˆ…})–ontoβ†’(fiβ€˜π΄))
 
Theoremdcfi 6982* Decidability of a family of propositions indexed by a finite set. (Contributed by Jim Kingdon, 30-Sep-2024.)
((𝐴 ∈ Fin ∧ βˆ€π‘₯ ∈ 𝐴 DECID πœ‘) β†’ DECID βˆ€π‘₯ ∈ 𝐴 πœ‘)
 
2.6.34  Supremum and infimum
 
Syntaxcsup 6983 Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐡. For example, 𝑅 could be 'less than' and 𝐡 could be the set of real numbers.
class sup(𝐴, 𝐡, 𝑅)
 
Syntaxcinf 6984 Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐡. For example, 𝑅 could be 'less than' and 𝐡 could be the set of real numbers.
class inf(𝐴, 𝐡, 𝑅)
 
Definitiondf-sup 6985* Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐡 and when the supremum exists. (Contributed by NM, 22-May-1999.)
sup(𝐴, 𝐡, 𝑅) = βˆͺ {π‘₯ ∈ 𝐡 ∣ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐡 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐴 𝑦𝑅𝑧))}
 
Definitiondf-inf 6986 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐡 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐡 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, ◑𝑅)
 
Theoremsupeq1 6987 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
(𝐡 = 𝐢 β†’ sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅))
 
Theoremsupeq1d 6988 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
(πœ‘ β†’ 𝐡 = 𝐢)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅))
 
Theoremsupeq1i 6989 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐡 = 𝐢    β‡’   sup(𝐡, 𝐴, 𝑅) = sup(𝐢, 𝐴, 𝑅)
 
Theoremsupeq2 6990 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐡 = 𝐢 β†’ sup(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐢, 𝑅))
 
Theoremsupeq3 6991 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑅 = 𝑆 β†’ sup(𝐴, 𝐡, 𝑅) = sup(𝐴, 𝐡, 𝑆))
 
Theoremsupeq123d 6992 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
(πœ‘ β†’ 𝐴 = 𝐷)    &   (πœ‘ β†’ 𝐡 = 𝐸)    &   (πœ‘ β†’ 𝐢 = 𝐹)    β‡’   (πœ‘ β†’ sup(𝐴, 𝐡, 𝐢) = sup(𝐷, 𝐸, 𝐹))
 
Theoremnfsup 6993 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
β„²π‘₯𝐴    &   β„²π‘₯𝐡    &   β„²π‘₯𝑅    β‡’   β„²π‘₯sup(𝐴, 𝐡, 𝑅)
 
Theoremsupmoti 6994* Any class 𝐡 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 8039) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ βˆƒ*π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))
 
Theoremsupeuti 6995* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))
 
Theoremsupval2ti 6996* Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = (β„©π‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧))))
 
Theoremeqsupti 6997* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    β‡’   (πœ‘ β†’ ((𝐢 ∈ 𝐴 ∧ βˆ€π‘¦ ∈ 𝐡 Β¬ 𝐢𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅𝐢 β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)) β†’ sup(𝐡, 𝐴, 𝑅) = 𝐢))
 
Theoremeqsuptid 6998* Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ 𝐢 ∈ 𝐴)    &   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ Β¬ 𝐢𝑅𝑦)    &   ((πœ‘ ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐢)) β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) = 𝐢)
 
Theoremsupclti 6999* A supremum belongs to its base class (closure law). See also supubti 7000 and suplubti 7001. (Contributed by Jim Kingdon, 24-Nov-2021.)
((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ sup(𝐡, 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupubti 7000* A supremum is an upper bound. See also supclti 6999 and suplubti 7001.

This proof demonstrates how to expand an iota-based definition (df-iota 5180) using riotacl2 5846.

(Contributed by Jim Kingdon, 24-Nov-2021.)

((πœ‘ ∧ (𝑒 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) β†’ (𝑒 = 𝑣 ↔ (Β¬ 𝑒𝑅𝑣 ∧ Β¬ 𝑣𝑅𝑒)))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝐴 (βˆ€π‘¦ ∈ 𝐡 Β¬ π‘₯𝑅𝑦 ∧ βˆ€π‘¦ ∈ 𝐴 (𝑦𝑅π‘₯ β†’ βˆƒπ‘§ ∈ 𝐡 𝑦𝑅𝑧)))    β‡’   (πœ‘ β†’ (𝐢 ∈ 𝐡 β†’ Β¬ sup(𝐡, 𝐴, 𝑅)𝑅𝐢))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >