ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival GIF version

Theorem fival 6866
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fival
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-fi 6865 . 2 fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥})
2 pweq 3518 . . . . 5 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
32ineq1d 3281 . . . 4 (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
43rexeqdv 2636 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥))
54abbidv 2258 . 2 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
6 elex 2700 . 2 (𝐴𝑉𝐴 ∈ V)
7 simpr 109 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
8 elinel1 3267 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 3526 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
10 eqvisset 2699 . . . . . . . . . . . 12 (𝑦 = 𝑥 𝑥 ∈ V)
11 intexr 4083 . . . . . . . . . . . 12 ( 𝑥 ∈ V → 𝑥 ≠ ∅)
1210, 11syl 14 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 ≠ ∅)
1312adantl 275 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ≠ ∅)
1413neneqd 2330 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ¬ 𝑥 = ∅)
15 elinel2 3268 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1615adantr 274 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ∈ Fin)
17 fin0or 6788 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1817orcomd 719 . . . . . . . . . 10 (𝑥 ∈ Fin → (∃𝑧 𝑧𝑥𝑥 = ∅))
1916, 18syl 14 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → (∃𝑧 𝑧𝑥𝑥 = ∅))
2014, 19ecased 1328 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ∃𝑧 𝑧𝑥)
21 intssuni2m 3803 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) → 𝑥 𝐴)
229, 20, 21syl2an2r 585 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 𝐴)
237, 22eqsstrd 3138 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 𝐴)
24 velpw 3522 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
2523, 24sylibr 133 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝒫 𝐴)
2625rexlimiva 2547 . . . 4 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴)
2726abssi 3177 . . 3 {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴
28 uniexg 4369 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2928pwexd 4113 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
30 ssexg 4075 . . 3 (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
3127, 29, 30sylancr 411 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
321, 5, 6, 31fvmptd3 5522 1 (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wne 2309  wrex 2418  Vcvv 2689  cin 3075  wss 3076  c0 3368  𝒫 cpw 3515   cuni 3744   cint 3779  cfv 5131  Fincfn 6642  ficfi 6864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-er 6437  df-en 6643  df-fin 6645  df-fi 6865
This theorem is referenced by:  elfi  6867  fi0  6871
  Copyright terms: Public domain W3C validator