ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival GIF version

Theorem fival 6935
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fival
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-fi 6934 . 2 fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥})
2 pweq 3562 . . . . 5 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
32ineq1d 3322 . . . 4 (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
43rexeqdv 2668 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥))
54abbidv 2284 . 2 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
6 elex 2737 . 2 (𝐴𝑉𝐴 ∈ V)
7 simpr 109 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
8 elinel1 3308 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 3570 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
10 eqvisset 2736 . . . . . . . . . . . 12 (𝑦 = 𝑥 𝑥 ∈ V)
11 intexr 4129 . . . . . . . . . . . 12 ( 𝑥 ∈ V → 𝑥 ≠ ∅)
1210, 11syl 14 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 ≠ ∅)
1312adantl 275 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ≠ ∅)
1413neneqd 2357 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ¬ 𝑥 = ∅)
15 elinel2 3309 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1615adantr 274 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ∈ Fin)
17 fin0or 6852 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1817orcomd 719 . . . . . . . . . 10 (𝑥 ∈ Fin → (∃𝑧 𝑧𝑥𝑥 = ∅))
1916, 18syl 14 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → (∃𝑧 𝑧𝑥𝑥 = ∅))
2014, 19ecased 1339 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ∃𝑧 𝑧𝑥)
21 intssuni2m 3848 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) → 𝑥 𝐴)
229, 20, 21syl2an2r 585 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 𝐴)
237, 22eqsstrd 3178 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 𝐴)
24 velpw 3566 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
2523, 24sylibr 133 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝒫 𝐴)
2625rexlimiva 2578 . . . 4 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴)
2726abssi 3217 . . 3 {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴
28 uniexg 4417 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2928pwexd 4160 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
30 ssexg 4121 . . 3 (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
3127, 29, 30sylancr 411 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
321, 5, 6, 31fvmptd3 5579 1 (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wne 2336  wrex 2445  Vcvv 2726  cin 3115  wss 3116  c0 3409  𝒫 cpw 3559   cuni 3789   cint 3824  cfv 5188  Fincfn 6706  ficfi 6933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709  df-fi 6934
This theorem is referenced by:  elfi  6936  fi0  6940
  Copyright terms: Public domain W3C validator