Step | Hyp | Ref
| Expression |
1 | | df-fi 6934 |
. 2
⊢ fi =
(𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) |
2 | | pweq 3562 |
. . . . 5
⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) |
3 | 2 | ineq1d 3322 |
. . . 4
⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
4 | 3 | rexeqdv 2668 |
. . 3
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) |
5 | 4 | abbidv 2284 |
. 2
⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |
6 | | elex 2737 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
7 | | simpr 109 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 = ∩
𝑥) |
8 | | elinel1 3308 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
9 | 8 | elpwid 3570 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
10 | | eqvisset 2736 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∩
𝑥 → ∩ 𝑥
∈ V) |
11 | | intexr 4129 |
. . . . . . . . . . . 12
⊢ (∩ 𝑥
∈ V → 𝑥 ≠
∅) |
12 | 10, 11 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑦 = ∩
𝑥 → 𝑥 ≠ ∅) |
13 | 12 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑥 ≠ ∅) |
14 | 13 | neneqd 2357 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ¬ 𝑥 = ∅) |
15 | | elinel2 3309 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) |
16 | 15 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑥 ∈ Fin) |
17 | | fin0or 6852 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Fin → (𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) |
18 | 17 | orcomd 719 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Fin → (∃𝑧 𝑧 ∈ 𝑥 ∨ 𝑥 = ∅)) |
19 | 16, 18 | syl 14 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → (∃𝑧 𝑧 ∈ 𝑥 ∨ 𝑥 = ∅)) |
20 | 14, 19 | ecased 1339 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ∃𝑧 𝑧 ∈ 𝑥) |
21 | | intssuni2m 3848 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) |
22 | 9, 20, 21 | syl2an2r 585 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ∩ 𝑥
⊆ ∪ 𝐴) |
23 | 7, 22 | eqsstrd 3178 |
. . . . . 6
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 ⊆ ∪ 𝐴) |
24 | | velpw 3566 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 ∪ 𝐴
↔ 𝑦 ⊆ ∪ 𝐴) |
25 | 23, 24 | sylibr 133 |
. . . . 5
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) |
26 | 25 | rexlimiva 2578 |
. . . 4
⊢
(∃𝑥 ∈
(𝒫 𝐴 ∩
Fin)𝑦 = ∩ 𝑥
→ 𝑦 ∈ 𝒫
∪ 𝐴) |
27 | 26 | abssi 3217 |
. . 3
⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 |
28 | | uniexg 4417 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
29 | 28 | pwexd 4160 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴
∈ V) |
30 | | ssexg 4121 |
. . 3
⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴
∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
31 | 27, 29, 30 | sylancr 411 |
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) |
32 | 1, 5, 6, 31 | fvmptd3 5579 |
1
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |