| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-fi 7035 | 
. 2
⊢ fi =
(𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥}) | 
| 2 |   | pweq 3608 | 
. . . . 5
⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | 
| 3 | 2 | ineq1d 3363 | 
. . . 4
⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) | 
| 4 | 3 | rexeqdv 2700 | 
. . 3
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥)) | 
| 5 | 4 | abbidv 2314 | 
. 2
⊢ (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = ∩ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) | 
| 6 |   | elex 2774 | 
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | 
| 7 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 = ∩
𝑥) | 
| 8 |   | elinel1 3349 | 
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) | 
| 9 | 8 | elpwid 3616 | 
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) | 
| 10 |   | eqvisset 2773 | 
. . . . . . . . . . . 12
⊢ (𝑦 = ∩
𝑥 → ∩ 𝑥
∈ V) | 
| 11 |   | intexr 4183 | 
. . . . . . . . . . . 12
⊢ (∩ 𝑥
∈ V → 𝑥 ≠
∅) | 
| 12 | 10, 11 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑦 = ∩
𝑥 → 𝑥 ≠ ∅) | 
| 13 | 12 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑥 ≠ ∅) | 
| 14 | 13 | neneqd 2388 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ¬ 𝑥 = ∅) | 
| 15 |   | elinel2 3350 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) | 
| 16 | 15 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑥 ∈ Fin) | 
| 17 |   | fin0or 6947 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ Fin → (𝑥 = ∅ ∨ ∃𝑧 𝑧 ∈ 𝑥)) | 
| 18 | 17 | orcomd 730 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ Fin → (∃𝑧 𝑧 ∈ 𝑥 ∨ 𝑥 = ∅)) | 
| 19 | 16, 18 | syl 14 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → (∃𝑧 𝑧 ∈ 𝑥 ∨ 𝑥 = ∅)) | 
| 20 | 14, 19 | ecased 1360 | 
. . . . . . . 8
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ∃𝑧 𝑧 ∈ 𝑥) | 
| 21 |   | intssuni2m 3898 | 
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) → ∩ 𝑥 ⊆ ∪ 𝐴) | 
| 22 | 9, 20, 21 | syl2an2r 595 | 
. . . . . . 7
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → ∩ 𝑥
⊆ ∪ 𝐴) | 
| 23 | 7, 22 | eqsstrd 3219 | 
. . . . . 6
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 ⊆ ∪ 𝐴) | 
| 24 |   | velpw 3612 | 
. . . . . 6
⊢ (𝑦 ∈ 𝒫 ∪ 𝐴
↔ 𝑦 ⊆ ∪ 𝐴) | 
| 25 | 23, 24 | sylibr 134 | 
. . . . 5
⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = ∩
𝑥) → 𝑦 ∈ 𝒫 ∪ 𝐴) | 
| 26 | 25 | rexlimiva 2609 | 
. . . 4
⊢
(∃𝑥 ∈
(𝒫 𝐴 ∩
Fin)𝑦 = ∩ 𝑥
→ 𝑦 ∈ 𝒫
∪ 𝐴) | 
| 27 | 26 | abssi 3258 | 
. . 3
⊢ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴 | 
| 28 |   | uniexg 4474 | 
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | 
| 29 | 28 | pwexd 4214 | 
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴
∈ V) | 
| 30 |   | ssexg 4172 | 
. . 3
⊢ (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ⊆ 𝒫 ∪ 𝐴
∧ 𝒫 ∪ 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | 
| 31 | 27, 29, 30 | sylancr 414 | 
. 2
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥} ∈ V) | 
| 32 | 1, 5, 6, 31 | fvmptd3 5655 | 
1
⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) |