ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fival GIF version

Theorem fival 6969
Description: The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fival
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-fi 6968 . 2 fi = (𝑧 ∈ V ↦ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥})
2 pweq 3579 . . . . 5 (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴)
32ineq1d 3336 . . . 4 (𝑧 = 𝐴 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
43rexeqdv 2680 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥))
54abbidv 2295 . 2 (𝑧 = 𝐴 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑦 = 𝑥} = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
6 elex 2749 . 2 (𝐴𝑉𝐴 ∈ V)
7 simpr 110 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
8 elinel1 3322 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
98elpwid 3587 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
10 eqvisset 2748 . . . . . . . . . . . 12 (𝑦 = 𝑥 𝑥 ∈ V)
11 intexr 4151 . . . . . . . . . . . 12 ( 𝑥 ∈ V → 𝑥 ≠ ∅)
1210, 11syl 14 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 ≠ ∅)
1312adantl 277 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ≠ ∅)
1413neneqd 2368 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ¬ 𝑥 = ∅)
15 elinel2 3323 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1615adantr 276 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 ∈ Fin)
17 fin0or 6886 . . . . . . . . . . 11 (𝑥 ∈ Fin → (𝑥 = ∅ ∨ ∃𝑧 𝑧𝑥))
1817orcomd 729 . . . . . . . . . 10 (𝑥 ∈ Fin → (∃𝑧 𝑧𝑥𝑥 = ∅))
1916, 18syl 14 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → (∃𝑧 𝑧𝑥𝑥 = ∅))
2014, 19ecased 1349 . . . . . . . 8 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → ∃𝑧 𝑧𝑥)
21 intssuni2m 3869 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) → 𝑥 𝐴)
229, 20, 21syl2an2r 595 . . . . . . 7 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑥 𝐴)
237, 22eqsstrd 3192 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 𝐴)
24 velpw 3583 . . . . . 6 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
2523, 24sylibr 134 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 = 𝑥) → 𝑦 ∈ 𝒫 𝐴)
2625rexlimiva 2589 . . . 4 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥𝑦 ∈ 𝒫 𝐴)
2726abssi 3231 . . 3 {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴
28 uniexg 4440 . . . 4 (𝐴𝑉 𝐴 ∈ V)
2928pwexd 4182 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
30 ssexg 4143 . . 3 (({𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
3127, 29, 30sylancr 414 . 2 (𝐴𝑉 → {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥} ∈ V)
321, 5, 6, 31fvmptd3 5610 1 (𝐴𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = 𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wex 1492  wcel 2148  {cab 2163  wne 2347  wrex 2456  Vcvv 2738  cin 3129  wss 3130  c0 3423  𝒫 cpw 3576   cuni 3810   cint 3845  cfv 5217  Fincfn 6740  ficfi 6967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-er 6535  df-en 6741  df-fin 6743  df-fi 6968
This theorem is referenced by:  elfi  6970  fi0  6974
  Copyright terms: Public domain W3C validator