![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fi | Unicode version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6973). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 6969 |
. 2
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | cvv 2739 |
. . 3
![]() ![]() | |
4 | vz |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1352 |
. . . . . 6
![]() ![]() |
6 | vy |
. . . . . . . 8
![]() ![]() | |
7 | 6 | cv 1352 |
. . . . . . 7
![]() ![]() |
8 | 7 | cint 3846 |
. . . . . 6
![]() ![]() ![]() |
9 | 5, 8 | wceq 1353 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
10 | 2 | cv 1352 |
. . . . . . 7
![]() ![]() |
11 | 10 | cpw 3577 |
. . . . . 6
![]() ![]() ![]() |
12 | cfn 6742 |
. . . . . 6
![]() ![]() | |
13 | 11, 12 | cin 3130 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 9, 6, 13 | wrex 2456 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14, 4 | cab 2163 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 2, 3, 15 | cmpt 4066 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 1, 16 | wceq 1353 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: fival 6971 |
Copyright terms: Public domain | W3C validator |