ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi Unicode version

Definition df-fi 6934
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6937). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi  |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 6933 . 2  class  fi
2 vx . . 3  setvar  x
3 cvv 2726 . . 3  class  _V
4 vz . . . . . . 7  setvar  z
54cv 1342 . . . . . 6  class  z
6 vy . . . . . . . 8  setvar  y
76cv 1342 . . . . . . 7  class  y
87cint 3824 . . . . . 6  class  |^| y
95, 8wceq 1343 . . . . 5  wff  z  = 
|^| y
102cv 1342 . . . . . . 7  class  x
1110cpw 3559 . . . . . 6  class  ~P x
12 cfn 6706 . . . . . 6  class  Fin
1311, 12cin 3115 . . . . 5  class  ( ~P x  i^i  Fin )
149, 6, 13wrex 2445 . . . 4  wff  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y
1514, 4cab 2151 . . 3  class  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y }
162, 3, 15cmpt 4043 . 2  class  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y } )
171, 16wceq 1343 1  wff  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Colors of variables: wff set class
This definition is referenced by:  fival  6935
  Copyright terms: Public domain W3C validator