ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi Unicode version

Definition df-fi 6906
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 6909). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi  |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 6905 . 2  class  fi
2 vx . . 3  setvar  x
3 cvv 2712 . . 3  class  _V
4 vz . . . . . . 7  setvar  z
54cv 1334 . . . . . 6  class  z
6 vy . . . . . . . 8  setvar  y
76cv 1334 . . . . . . 7  class  y
87cint 3807 . . . . . 6  class  |^| y
95, 8wceq 1335 . . . . 5  wff  z  = 
|^| y
102cv 1334 . . . . . . 7  class  x
1110cpw 3543 . . . . . 6  class  ~P x
12 cfn 6678 . . . . . 6  class  Fin
1311, 12cin 3101 . . . . 5  class  ( ~P x  i^i  Fin )
149, 6, 13wrex 2436 . . . 4  wff  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y
1514, 4cab 2143 . . 3  class  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y }
162, 3, 15cmpt 4025 . 2  class  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y } )
171, 16wceq 1335 1  wff  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Colors of variables: wff set class
This definition is referenced by:  fival  6907
  Copyright terms: Public domain W3C validator