![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fi | Unicode version |
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7033). (Contributed by FL, 27-Apr-2008.) |
Ref | Expression |
---|---|
df-fi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfi 7029 |
. 2
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | cvv 2760 |
. . 3
![]() ![]() | |
4 | vz |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1363 |
. . . . . 6
![]() ![]() |
6 | vy |
. . . . . . . 8
![]() ![]() | |
7 | 6 | cv 1363 |
. . . . . . 7
![]() ![]() |
8 | 7 | cint 3871 |
. . . . . 6
![]() ![]() ![]() |
9 | 5, 8 | wceq 1364 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
10 | 2 | cv 1363 |
. . . . . . 7
![]() ![]() |
11 | 10 | cpw 3602 |
. . . . . 6
![]() ![]() ![]() |
12 | cfn 6796 |
. . . . . 6
![]() ![]() | |
13 | 11, 12 | cin 3153 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 9, 6, 13 | wrex 2473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14, 4 | cab 2179 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 2, 3, 15 | cmpt 4091 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 1, 16 | wceq 1364 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: fival 7031 |
Copyright terms: Public domain | W3C validator |