ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-fi Unicode version

Definition df-fi 7030
Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 7033). (Contributed by FL, 27-Apr-2008.)
Assertion
Ref Expression
df-fi  |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-fi
StepHypRef Expression
1 cfi 7029 . 2  class  fi
2 vx . . 3  setvar  x
3 cvv 2760 . . 3  class  _V
4 vz . . . . . . 7  setvar  z
54cv 1363 . . . . . 6  class  z
6 vy . . . . . . . 8  setvar  y
76cv 1363 . . . . . . 7  class  y
87cint 3871 . . . . . 6  class  |^| y
95, 8wceq 1364 . . . . 5  wff  z  = 
|^| y
102cv 1363 . . . . . . 7  class  x
1110cpw 3602 . . . . . 6  class  ~P x
12 cfn 6796 . . . . . 6  class  Fin
1311, 12cin 3153 . . . . 5  class  ( ~P x  i^i  Fin )
149, 6, 13wrex 2473 . . . 4  wff  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y
1514, 4cab 2179 . . 3  class  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y }
162, 3, 15cmpt 4091 . 2  class  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i 
Fin ) z  = 
|^| y } )
171, 16wceq 1364 1  wff  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
Colors of variables: wff set class
This definition is referenced by:  fival  7031
  Copyright terms: Public domain W3C validator