Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fin | GIF version |
Description: Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 13858. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
df-fin | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfn 6706 | . 2 class Fin | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1342 | . . . . 5 class 𝑥 |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 4 | cv 1342 | . . . . 5 class 𝑦 |
6 | cen 6704 | . . . . 5 class ≈ | |
7 | 3, 5, 6 | wbr 3982 | . . . 4 wff 𝑥 ≈ 𝑦 |
8 | com 4567 | . . . 4 class ω | |
9 | 7, 4, 8 | wrex 2445 | . . 3 wff ∃𝑦 ∈ ω 𝑥 ≈ 𝑦 |
10 | 9, 2 | cab 2151 | . 2 class {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
11 | 1, 10 | wceq 1343 | 1 wff Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
Colors of variables: wff set class |
This definition is referenced by: isfi 6727 |
Copyright terms: Public domain | W3C validator |