| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relen | GIF version | ||
| Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| relen | ⊢ Rel ≈ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-en 6886 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 2 | 1 | relopabi 4846 | 1 ⊢ Rel ≈ |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1538 Rel wrel 4723 –1-1-onto→wf1o 5316 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-rel 4725 df-en 6886 |
| This theorem is referenced by: encv 6891 isfi 6910 enssdom 6911 ener 6929 en1uniel 6954 xpen 7002 enomnilem 7301 enmkvlem 7324 enwomnilem 7332 djuenun 7390 cc3 7450 pwf1oexmid 16324 |
| Copyright terms: Public domain | W3C validator |