ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relen GIF version

Theorem relen 6844
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
relen Rel ≈

Proof of Theorem relen
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-en 6841 . 2 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
21relopabi 4811 1 Rel ≈
Colors of variables: wff set class
Syntax hints:  wex 1516  Rel wrel 4688  1-1-ontowf1o 5279  cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114  df-xp 4689  df-rel 4690  df-en 6841
This theorem is referenced by:  encv  6846  isfi  6865  enssdom  6866  ener  6884  en1uniel  6909  xpen  6957  enomnilem  7255  enmkvlem  7278  enwomnilem  7286  djuenun  7340  cc3  7400  pwf1oexmid  16077
  Copyright terms: Public domain W3C validator