Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  relen GIF version

Theorem relen 6648
 Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
relen Rel ≈

Proof of Theorem relen
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-en 6645 . 2 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
21relopabi 4675 1 Rel ≈
 Colors of variables: wff set class Syntax hints:  ∃wex 1469  Rel wrel 4554  –1-1-onto→wf1o 5132   ≈ cen 6642 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2692  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-opab 3999  df-xp 4555  df-rel 4556  df-en 6645 This theorem is referenced by:  encv  6650  isfi  6665  enssdom  6666  ener  6683  en1uniel  6708  xpen  6749  enomnilem  7023  enmkvlem  7048  enwomnilem  7056  djuenun  7091  cc3  7123  pwf1oexmid  13399
 Copyright terms: Public domain W3C validator