Theorem List for Intuitionistic Logic Explorer - 6701-6800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ecopover 6701* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
| |
| Theorem | ecopovsymg 6702* |
Assuming the operation 𝐹 is commutative, show that the
relation
∼, specified
by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) |
| |
| Theorem | ecopovtrng 6703* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |
| |
| Theorem | ecopoverg 6704* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
| |
| Theorem | th3qlem1 6705* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ ∼ Er 𝑆 & ⊢ (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝑦 ∼ 𝑤 ∧ 𝑧 ∼ 𝑣) → (𝑦 + 𝑧) ∼ (𝑤 + 𝑣))) ⇒ ⊢ ((𝐴 ∈ (𝑆 / ∼ ) ∧ 𝐵 ∈ (𝑆 / ∼ )) →
∃*𝑥∃𝑦∃𝑧((𝐴 = [𝑦] ∼ ∧ 𝐵 = [𝑧] ∼ ) ∧ 𝑥 = [(𝑦 + 𝑧)] ∼
)) |
| |
| Theorem | th3qlem2 6706* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) ⇒ ⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ∼ ∧ 𝐵 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
)) |
| |
| Theorem | th3qcor 6707* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ Fun 𝐺 |
| |
| Theorem | th3q 6708* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ 𝐺[〈𝐶, 𝐷〉] ∼ ) = [(〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉)] ∼ ) |
| |
| Theorem | oviec 6709* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
| ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐻 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 𝐾 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → 𝐿 ∈ (𝑆 × 𝑆)) & ⊢ ∼
∈ V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ 𝜑))} & ⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝜑 ↔ 𝜓)) & ⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝜑 ↔ 𝜒)) & ⊢ + =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝐽))} & ⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝐽 = 𝐾)
& ⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝐽 = 𝐿)
& ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝐽 = 𝐻)
& ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ∧ ∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ∼ ∧ 𝑦 = [〈𝑐, 𝑑〉] ∼ ) ∧ 𝑧 = [(〈𝑎, 𝑏〉 + 〈𝑐, 𝑑〉)] ∼ ))} & ⊢ 𝑄 = ((𝑆 × 𝑆) / ∼ ) & ⊢ ((((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆))) → ((𝜓 ∧ 𝜒) → 𝐾 ∼ 𝐿)) ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ ⨣ [〈𝐶, 𝐷〉] ∼ ) = [𝐻] ∼ ) |
| |
| Theorem | ecovcom 6710* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6711 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ 𝐷 = 𝐻
& ⊢ 𝐺 = 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | ecovicom 6711* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
| ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | ecovass 6712* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6713 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ 𝐽 = 𝐿
& ⊢ 𝐾 = 𝑀 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| |
| Theorem | ecoviass 6713* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐾 = 𝑀) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| |
| Theorem | ecovdi 6714* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6715 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ 𝐻 = 𝐾
& ⊢ 𝐽 = 𝐿 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| |
| Theorem | ecovidi 6715* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐻 = 𝐾)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| |
| 2.6.26 The mapping operation
|
| |
| Syntax | cmap 6716 |
Extend the definition of a class to include the mapping operation. (Read
for 𝐴
↑𝑚 𝐵, "the set of all functions that
map from 𝐵 to
𝐴.)
|
| class ↑𝑚 |
| |
| Syntax | cpm 6717 |
Extend the definition of a class to include the partial mapping operation.
(Read for 𝐴 ↑pm 𝐵, "the set of all
partial functions that map from
𝐵 to 𝐴.)
|
| class ↑pm |
| |
| Definition | df-map 6718* |
Define the mapping operation or set exponentiation. The set of all
functions that map from 𝐵 to 𝐴 is written (𝐴
↑𝑚 𝐵) (see
mapval 6728). Many authors write 𝐴 followed by 𝐵 as a
superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show 𝐵 as a prefixed superscript, which is
read "𝐴 pre 𝐵 " (e.g., definition
of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map(𝐵,
𝐴) for our (𝐴 ↑𝑚
𝐵). The up-arrow is
used by Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
| ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
| |
| Definition | df-pm 6719* |
Define the partial mapping operation. A partial function from 𝐵 to
𝐴 is a function from a subset of 𝐵 to
𝐴.
The set of all
partial functions from 𝐵 to 𝐴 is written (𝐴
↑pm 𝐵) (see
pmvalg 6727). A notation for this operation apparently
does not appear in
the literature. We use ↑pm to distinguish it from the less
general
set exponentiation operation ↑𝑚 (df-map 6718) . See mapsspm 6750 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
| ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
| |
| Theorem | mapprc 6720* |
When 𝐴 is a proper class, the class of all
functions mapping 𝐴
to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed
by NM, 8-Dec-2003.)
|
| ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| |
| Theorem | pmex 6721* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
| |
| Theorem | mapex 6722* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| |
| Theorem | fnmap 6723 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
| ⊢ ↑𝑚 Fn (V ×
V) |
| |
| Theorem | fnpm 6724 |
Partial function exponentiation has a universal domain. (Contributed by
Mario Carneiro, 14-Nov-2013.)
|
| ⊢ ↑pm Fn (V ×
V) |
| |
| Theorem | reldmmap 6725 |
Set exponentiation is a well-behaved binary operator. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
| ⊢ Rel dom
↑𝑚 |
| |
| Theorem | mapvalg 6726* |
The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all
functions that map from 𝐵 to 𝐴. Definition 10.24 of
[Kunen]
p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| |
| Theorem | pmvalg 6727* |
The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set
of all partial functions that map from 𝐵 to 𝐴.
(Contributed by
NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| |
| Theorem | mapval 6728* |
The value of set exponentiation (inference version). (𝐴 ↑𝑚
𝐵) is
the set of all functions that map from 𝐵 to 𝐴.
Definition
10.24 of [Kunen] p. 24. (Contributed by
NM, 8-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| |
| Theorem | elmapg 6729 |
Membership relation for set exponentiation. (Contributed by NM,
17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| |
| Theorem | elmapd 6730 |
Deduction form of elmapg 6729. (Contributed by BJ, 11-Apr-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| |
| Theorem | mapdm0 6731 |
The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux,
3-Dec-2021.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) =
{∅}) |
| |
| Theorem | elpmg 6732 |
The predicate "is a partial function". (Contributed by Mario
Carneiro,
14-Nov-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
| |
| Theorem | elpm2g 6733 |
The predicate "is a partial function". (Contributed by NM,
31-Dec-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| |
| Theorem | elpm2r 6734 |
Sufficient condition for being a partial function. (Contributed by NM,
31-Dec-2013.)
|
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| |
| Theorem | elpmi 6735 |
A partial function is a function. (Contributed by Mario Carneiro,
15-Sep-2015.)
|
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| |
| Theorem | pmfun 6736 |
A partial function is a function. (Contributed by Mario Carneiro,
30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → Fun 𝐹) |
| |
| Theorem | elmapex 6737 |
Eliminate antecedent for mapping theorems: domain can be taken to be a
set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| |
| Theorem | elmapi 6738 |
A mapping is a function, forward direction only with superfluous
antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| |
| Theorem | elmapfn 6739 |
A mapping is a function with the appropriate domain. (Contributed by AV,
6-Apr-2019.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴 Fn 𝐶) |
| |
| Theorem | elmapfun 6740 |
A mapping is always a function. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → Fun 𝐴) |
| |
| Theorem | elmapssres 6741 |
A restricted mapping is a mapping. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
|
| ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷)) |
| |
| Theorem | fpmg 6742 |
A total function is a partial function. (Contributed by Mario Carneiro,
31-Dec-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| |
| Theorem | pmss12g 6743 |
Subset relation for the set of partial functions. (Contributed by Mario
Carneiro, 31-Dec-2013.)
|
| ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
| |
| Theorem | pmresg 6744 |
Elementhood of a restricted function in the set of partial functions.
(Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| |
| Theorem | elmap 6745 |
Membership relation for set exponentiation. (Contributed by NM,
8-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
| |
| Theorem | mapval2 6746* |
Alternate expression for the value of set exponentiation. (Contributed
by NM, 3-Nov-2007.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| |
| Theorem | elpm 6747 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴))) |
| |
| Theorem | elpm2 6748 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| |
| Theorem | fpm 6749 |
A total function is a partial function. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| |
| Theorem | mapsspm 6750 |
Set exponentiation is a subset of partial maps. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
|
| ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| |
| Theorem | pmsspw 6751 |
Partial maps are a subset of the power set of the Cartesian product of
its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
|
| ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| |
| Theorem | mapsspw 6752 |
Set exponentiation is a subset of the power set of the Cartesian product
of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario
Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| |
| Theorem | fvmptmap 6753* |
Special case of fvmpt 5641 for operator theorems. (Contributed by NM,
27-Nov-2007.)
|
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝑅 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶)
& ⊢ 𝐹 = (𝑥 ∈ (𝑅 ↑𝑚 𝐷) ↦ 𝐵) ⇒ ⊢ (𝐴:𝐷⟶𝑅 → (𝐹‘𝐴) = 𝐶) |
| |
| Theorem | map0e 6754 |
Set exponentiation with an empty exponent (ordinal number 0) is ordinal
number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM,
10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑𝑚 ∅) =
1o) |
| |
| Theorem | map0b 6755 |
Set exponentiation with an empty base is the empty set, provided the
exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by
NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐴 ≠ ∅ → (∅
↑𝑚 𝐴) = ∅) |
| |
| Theorem | map0g 6756 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by Mario
Carneiro, 30-Apr-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅))) |
| |
| Theorem | map0 6757 |
Set exponentiation is empty iff the base is empty and the exponent is
not empty. Theorem 97 of [Suppes] p. 89.
(Contributed by NM,
10-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ ((𝐴 ↑𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠
∅)) |
| |
| Theorem | mapsn 6758* |
The value of set exponentiation with a singleton exponent. Theorem 98
of [Suppes] p. 89. (Contributed by NM,
10-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}} |
| |
| Theorem | mapss 6759 |
Subset inheritance for set exponentiation. Theorem 99 of [Suppes]
p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
| |
| Theorem | fdiagfn 6760* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
| |
| Theorem | fvdiagfn 6761* |
Functionality of the diagonal map. (Contributed by Stefan O'Rear,
24-Jan-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (𝐼 × {𝑋})) |
| |
| Theorem | mapsnconst 6762 |
Every singleton map is a constant function. (Contributed by Stefan
O'Rear, 25-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| |
| Theorem | mapsncnv 6763* |
Expression for the inverse of the canonical map between a set and its
set of singleton functions. (Contributed by Stefan O'Rear,
21-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| |
| Theorem | mapsnf1o2 6764* |
Explicit bijection between a set and its singleton functions.
(Contributed by Stefan O'Rear, 21-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) ⇒ ⊢ 𝐹:(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| |
| Theorem | mapsnf1o3 6765* |
Explicit bijection in the reverse of mapsnf1o2 6764. (Contributed by
Stefan O'Rear, 24-Mar-2015.)
|
| ⊢ 𝑆 = {𝑋}
& ⊢ 𝐵 ∈ V & ⊢ 𝑋 ∈ V & ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) ⇒ ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| |
| 2.6.27 Infinite Cartesian products
|
| |
| Syntax | cixp 6766 |
Extend class notation to include infinite Cartesian products.
|
| class X𝑥 ∈ 𝐴 𝐵 |
| |
| Definition | df-ixp 6767* |
Definition of infinite Cartesian product of [Enderton] p. 54. Enderton
uses a bold "X" with 𝑥 ∈ 𝐴 written underneath or as a
subscript, as
does Stoll p. 47. Some books use a capital pi, but we will reserve that
notation for products of numbers. Usually 𝐵 represents a class
expression containing 𝑥 free and thus can be thought of as
𝐵(𝑥). Normally, 𝑥 is not free in 𝐴,
although this is
not a requirement of the definition. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| |
| Theorem | dfixp 6768* |
Eliminate the expression {𝑥 ∣ 𝑥 ∈ 𝐴} in df-ixp 6767, under the
assumption that 𝐴 and 𝑥 are disjoint. This way,
we can say that
𝑥 is bound in X𝑥 ∈
𝐴𝐵 even if it appears free in 𝐴.
(Contributed by Mario Carneiro, 12-Aug-2016.)
|
| ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
| |
| Theorem | ixpsnval 6769* |
The value of an infinite Cartesian product with a singleton.
(Contributed by AV, 3-Dec-2018.)
|
| ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| |
| Theorem | elixp2 6770* |
Membership in an infinite Cartesian product. See df-ixp 6767 for
discussion of the notation. (Contributed by NM, 28-Sep-2006.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| |
| Theorem | fvixp 6771* |
Projection of a factor of an indexed Cartesian product. (Contributed by
Mario Carneiro, 11-Jun-2016.)
|
| ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
| |
| Theorem | ixpfn 6772* |
A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by
Mario Carneiro, 31-May-2014.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| |
| Theorem | elixp 6773* |
Membership in an infinite Cartesian product. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| |
| Theorem | elixpconst 6774* |
Membership in an infinite Cartesian product of a constant 𝐵.
(Contributed by NM, 12-Apr-2008.)
|
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| |
| Theorem | ixpconstg 6775* |
Infinite Cartesian product of a constant 𝐵. (Contributed by Mario
Carneiro, 11-Jan-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpconst 6776* |
Infinite Cartesian product of a constant 𝐵. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴) |
| |
| Theorem | ixpeq1 6777* |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ixpeq1d 6778* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| |
| Theorem | ss2ixp 6779 |
Subclass theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2 6780 |
Equality theorem for infinite Cartesian product. (Contributed by NM,
29-Sep-2006.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dva 6781* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpeq2dv 6782* |
Equality theorem for infinite Cartesian product. (Contributed by Mario
Carneiro, 11-Jun-2016.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvixp 6783* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 20-Jun-2011.)
|
| ⊢ Ⅎ𝑦𝐵
& ⊢ Ⅎ𝑥𝐶
& ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvixpv 6784* |
Change bound variable in an indexed Cartesian product. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| |
| Theorem | nfixpxy 6785* |
Bound-variable hypothesis builder for indexed Cartesian product.
(Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ Ⅎ𝑦𝐴
& ⊢ Ⅎ𝑦𝐵 ⇒ ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | nfixp1 6786 |
The index variable in an indexed Cartesian product is not free.
(Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro,
15-Oct-2016.)
|
| ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| |
| Theorem | ixpprc 6787* |
A cartesian product of proper-class many sets is empty, because any
function in the cartesian product has to be a set with domain 𝐴,
which is not possible for a proper class domain. (Contributed by Mario
Carneiro, 25-Jan-2015.)
|
| ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpf 6788* |
A member of an infinite Cartesian product maps to the indexed union of
the product argument. Remark in [Enderton] p. 54. (Contributed by NM,
28-Sep-2006.)
|
| ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪
𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | uniixp 6789* |
The union of an infinite Cartesian product is included in a Cartesian
product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro,
24-Jun-2015.)
|
| ⊢ ∪ X𝑥 ∈
𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) |
| |
| Theorem | ixpexgg 6790* |
The existence of an infinite Cartesian product. 𝑥 is normally a
free-variable parameter in 𝐵. Remark in Enderton p. 54.
(Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ ((𝐴 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| |
| Theorem | ixpin 6791* |
The intersection of two infinite Cartesian products. (Contributed by
Mario Carneiro, 3-Feb-2015.)
|
| ⊢ X𝑥 ∈ 𝐴 (𝐵 ∩ 𝐶) = (X𝑥 ∈ 𝐴 𝐵 ∩ X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpiinm 6792* |
The indexed intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝑦 ∈ 𝐵 𝐶 = ∩
𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝐶) |
| |
| Theorem | ixpintm 6793* |
The intersection of a collection of infinite Cartesian products.
(Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon,
15-Feb-2023.)
|
| ⊢ (∃𝑧 𝑧 ∈ 𝐵 → X𝑥 ∈ 𝐴 ∩ 𝐵 = ∩ 𝑦 ∈ 𝐵 X𝑥 ∈ 𝐴 𝑦) |
| |
| Theorem | ixp0x 6794 |
An infinite Cartesian product with an empty index set. (Contributed by
NM, 21-Sep-2007.)
|
| ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| |
| Theorem | ixpssmap2g 6795* |
An infinite Cartesian product is a subset of set exponentiation. This
version of ixpssmapg 6796 avoids ax-coll 4149. (Contributed by Mario
Carneiro, 16-Nov-2014.)
|
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | ixpssmapg 6796* |
An infinite Cartesian product is a subset of set exponentiation.
(Contributed by Jeff Madsen, 19-Jun-2011.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴)) |
| |
| Theorem | 0elixp 6797 |
Membership of the empty set in an infinite Cartesian product.
(Contributed by Steve Rodriguez, 29-Sep-2006.)
|
| ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| |
| Theorem | ixpm 6798* |
If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited,
every 𝐵(𝑥) is inhabited. (Contributed by Mario
Carneiro,
22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑧 𝑧 ∈ 𝐵) |
| |
| Theorem | ixp0 6799 |
The infinite Cartesian product of a family 𝐵(𝑥) with an empty
member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim
Kingdon, 16-Feb-2023.)
|
| ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈
𝐴 𝐵 = ∅) |
| |
| Theorem | ixpssmap 6800* |
An infinite Cartesian product is a subset of set exponentiation. Remark
in [Enderton] p. 54. (Contributed by
NM, 28-Sep-2006.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑𝑚 𝐴) |