HomeHome Intuitionistic Logic Explorer
Theorem List (p. 68 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6701-6800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremercl2 6701 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑𝐵𝑋)
 
Theoremersymb 6702 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremertr 6703 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
 
Theoremertrd 6704 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr2d 6705 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐶𝑅𝐴)
 
Theoremertr3d 6706 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑅𝐴)    &   (𝜑𝐵𝑅𝐶)       (𝜑𝐴𝑅𝐶)
 
Theoremertr4d 6707 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝐶𝑅𝐵)       (𝜑𝐴𝑅𝐶)
 
Theoremerref 6708 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑𝐴𝑅𝐴)
 
Theoremercnv 6709 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 = 𝑅)
 
Theoremerrn 6710 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
 
Theoremerssxp 6711 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
 
Theoremerex 6712 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝐴𝑉𝑅 ∈ V))
 
Theoremerexb 6713 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
 
Theoremiserd 6714* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑 → Rel 𝑅)    &   ((𝜑𝑥𝑅𝑦) → 𝑦𝑅𝑥)    &   ((𝜑 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧)    &   (𝜑 → (𝑥𝐴𝑥𝑅𝑥))       (𝜑𝑅 Er 𝐴)
 
Theorembrdifun 6715 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))       ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
 
Theoremswoer 6716* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))       (𝜑𝑅 Er 𝑋)
 
Theoremswoord1 6717* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
 
Theoremswoord2 6718* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))    &   ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))    &   (𝜑𝐵𝑋)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremeqerlem 6719* Lemma for eqer 6720. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
 
Theoremeqer 6720* Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝑥 = 𝑦𝐴 = 𝐵)    &   𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}       𝑅 Er V
 
Theoremider 6721 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
I Er V
 
Theorem0er 6722 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
∅ Er ∅
 
Theoremeceq1 6723 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq1d 6724 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
(𝜑𝐴 = 𝐵)       (𝜑 → [𝐴]𝐶 = [𝐵]𝐶)
 
Theoremeceq2 6725 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
 
Theoremeceq2i 6726 Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
𝐴 = 𝐵       [𝐶]𝐴 = [𝐶]𝐵
 
Theoremeceq2d 6727 Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.)
(𝜑𝐴 = 𝐵)       (𝜑 → [𝐶]𝐴 = [𝐶]𝐵)
 
Theoremelecg 6728 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremelec 6729 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
 
Theoremrelelec 6730 Membership in an equivalence class when 𝑅 is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
(Rel 𝑅 → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
 
Theoremecss 6731 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)       (𝜑 → [𝐴]𝑅𝑋)
 
Theoremecdmn0m 6732* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
(𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
 
Theoremereldm 6733 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)       (𝜑 → (𝐴𝑋𝐵𝑋))
 
Theoremerth 6734 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerth2 6735 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐵𝑋)       (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
 
Theoremerthi 6736 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝜑𝑅 Er 𝑋)    &   (𝜑𝐴𝑅𝐵)       (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
 
Theoremecidsn 6737 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
[𝐴] I = {𝐴}
 
Theoremqseq1 6738 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
 
Theoremqseq2 6739 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
 
Theoremelqsg 6740* Closed form of elqs 6741. (Contributed by Rodolfo Medina, 12-Oct-2010.)
(𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
 
Theoremelqs 6741* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
𝐵 ∈ V       (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremelqsi 6742* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
(𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥𝐴 𝐵 = [𝑥]𝑅)
 
Theoremecelqsg 6743 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 
Theoremecelqsi 6744 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑅 ∈ V       (𝐵𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
 
Theoremecopqsi 6745 "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
𝑅 ∈ V    &   𝑆 = ((𝐴 × 𝐴) / 𝑅)       ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
 
Theoremqsexg 6746 A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴𝑉 → (𝐴 / 𝑅) ∈ V)
 
Theoremqsex 6747 A quotient set exists. (Contributed by NM, 14-Aug-1995.)
𝐴 ∈ V       (𝐴 / 𝑅) ∈ V
 
Theoremuniqs 6748 The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
(𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
 
Theoremqsss 6749 A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝐴)       (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)
 
Theoremuniqs2 6750 The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
(𝜑𝑅 Er 𝐴)    &   (𝜑𝑅𝑉)       (𝜑 (𝐴 / 𝑅) = 𝐴)
 
Theoremsnec 6751 The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐴 ∈ V       {[𝐴]𝑅} = ({𝐴} / 𝑅)
 
Theoremecqs 6752 Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
𝑅 ∈ V       [𝐴]𝑅 = ({𝐴} / 𝑅)
 
Theoremecid 6753 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐴 ∈ V       [𝐴] E = 𝐴
 
Theoremecidg 6754 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by Jim Kingdon, 8-Jan-2020.)
(𝐴𝑉 → [𝐴] E = 𝐴)
 
Theoremqsid 6755 A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(𝐴 / E ) = 𝐴
 
Theoremectocld 6756* Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
𝑆 = (𝐵 / 𝑅)    &   ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))    &   ((𝜒𝑥𝐵) → 𝜑)       ((𝜒𝐴𝑆) → 𝜓)
 
Theoremectocl 6757* Implicit substitution of class for equivalence class. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝑆 = (𝐵 / 𝑅)    &   ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))    &   (𝑥𝐵𝜑)       (𝐴𝑆𝜓)
 
Theoremelqsn0m 6758* An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
 
Theoremelqsn0 6759 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
 
Theoremecelqsdm 6760 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵𝐴)
 
Theoremxpider 6761 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝐴 × 𝐴) Er 𝐴
 
Theoremiinerm 6762* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
 
Theoremriinerm 6763* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
 
Theoremerinxp 6764 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
 
Theoremecinxp 6765 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
(((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
 
Theoremqsinxp 6766 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))
 
Theoremqsel 6767 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
 
Theoremqliftlem 6768* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
 
Theoremqliftrel 6769* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌))
 
Theoremqliftel 6770* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
 
Theoremqliftel1 6771* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅𝐹𝐴)
 
Theoremqliftfun 6772* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))
 
Theoremqliftfund 6773* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)       (𝜑 → Fun 𝐹)
 
Theoremqliftfuns 6774* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
 
Theoremqliftf 6775* The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
 
Theoremqliftval 6776* The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝐶𝐴 = 𝐵)    &   (𝜑 → Fun 𝐹)       ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)
 
Theoremecoptocl 6777* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐵 × 𝐶) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝑆𝜓)
 
Theorem2ecoptocl 6778* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐶 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆) → 𝜒)
 
Theorem3ecoptocl 6779* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
𝑆 = ((𝐷 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
 
Theorembrecop 6780* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
∈ V    &    Er (𝐺 × 𝐺)    &   𝐻 = ((𝐺 × 𝐺) / )    &    = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))}    &   ((((𝑧𝐺𝑤𝐺) ∧ (𝐴𝐺𝐵𝐺)) ∧ ((𝑣𝐺𝑢𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))       (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] 𝜓))
 
Theoremeroveu 6781* Lemma for eroprf 6783. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))       ((𝜑 ∧ (𝑋𝐽𝑌𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑋 = [𝑝]𝑅𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
 
Theoremerovlem 6782* Lemma for eroprf 6783. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}       (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
 
Theoremeroprf 6783* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   (𝜑𝑅𝑋)    &   (𝜑𝑆𝑌)    &   𝐿 = (𝐶 / 𝑇)       (𝜑 :(𝐽 × 𝐾)⟶𝐿)
 
Theoremeroprf2 6784* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐽 = (𝐴 / )    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}    &   (𝜑𝑋)    &   (𝜑 Er 𝑈)    &   (𝜑𝐴𝑈)    &   (𝜑+ :(𝐴 × 𝐴)⟶𝐴)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))       (𝜑 :(𝐽 × 𝐽)⟶𝐽)
 
Theoremecopoveq 6785* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
 
Theoremecopovsym 6786* Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)       (𝐴 𝐵𝐵 𝐴)
 
Theoremecopovtrn 6787* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))       ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
 
Theoremecopover 6788* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))        Er (𝑆 × 𝑆)
 
Theoremecopovsymg 6789* Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝐴 𝐵𝐵 𝐴)
 
Theoremecopovtrng 6790* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))       ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)
 
Theoremecopoverg 6791* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))        Er (𝑆 × 𝑆)
 
Theoremth3qlem1 6792* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Er 𝑆    &   (((𝑦𝑆𝑤𝑆) ∧ (𝑧𝑆𝑣𝑆)) → ((𝑦 𝑤𝑧 𝑣) → (𝑦 + 𝑧) (𝑤 + 𝑣)))       ((𝐴 ∈ (𝑆 / ) ∧ 𝐵 ∈ (𝑆 / )) → ∃*𝑥𝑦𝑧((𝐴 = [𝑦] 𝐵 = [𝑧] ) ∧ 𝑥 = [(𝑦 + 𝑧)] ))
 
Theoremth3qlem2 6793* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))       ((𝐴 ∈ ((𝑆 × 𝑆) / ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] 𝐵 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))
 
Theoremth3qcor 6794* Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))    &   𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] 𝑦 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))}       Fun 𝐺
 
Theoremth3q 6795* Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))    &   𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] 𝑦 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] 𝐺[⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )
 
Theoremoviec 6796* Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))    &   (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))    &   (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))    &    ∈ V    &    Er (𝑆 × 𝑆)    &    = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}    &   (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))    &   (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))    &    + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}    &   (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)    &   (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)    &   (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}    &   𝑄 = ((𝑆 × 𝑆) / )    &   ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )
 
Theoremecovcom 6797* Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6798 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐶 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )    &   𝐷 = 𝐻    &   𝐺 = 𝐽       ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremecovicom 6798* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
𝐶 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)       ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremecovass 6799* Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6800 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )    &   (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))    &   𝐽 = 𝐿    &   𝐾 = 𝑀       ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 
Theoremecoviass 6800* Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )    &   (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐾 = 𝑀)       ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >