HomeHome Intuitionistic Logic Explorer
Theorem List (p. 68 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6701-6800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremixpsnval 6701* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
(𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
 
Theoremelixp2 6702* Membership in an infinite Cartesian product. See df-ixp 6699 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfvixp 6703* Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝑥 = 𝐶𝐵 = 𝐷)       ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
 
Theoremixpfn 6704* A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
(𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
 
Theoremelixp 6705* Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
𝐹 ∈ V       (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremelixpconst 6706* Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.)
𝐹 ∈ V       (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
 
Theoremixpconstg 6707* Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.)
((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵𝑚 𝐴))
 
Theoremixpconst 6708* Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.)
𝐴 ∈ V    &   𝐵 ∈ V       X𝑥𝐴 𝐵 = (𝐵𝑚 𝐴)
 
Theoremixpeq1 6709* Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
(𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
 
Theoremixpeq1d 6710* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐴 = 𝐵)       (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
 
Theoremss2ixp 6711 Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
(∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremixpeq2 6712 Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
(∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremixpeq2dva 6713* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremixpeq2dv 6714* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremcbvixp 6715* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremcbvixpv 6716* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremnfixpxy 6717* Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Jim Kingdon, 15-Feb-2023.)
𝑦𝐴    &   𝑦𝐵       𝑦X𝑥𝐴 𝐵
 
Theoremnfixp1 6718 The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥X𝑥𝐴 𝐵
 
Theoremixpprc 6719* A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpf 6720* A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
 
Theoremuniixp 6721* The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
 
Theoremixpexgg 6722* The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Jim Kingdon, 15-Feb-2023.)
((𝐴𝑊 ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
 
Theoremixpin 6723* The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremixpiinm 6724* The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
 
Theoremixpintm 6725* The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
(∃𝑧 𝑧𝐵X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
 
Theoremixp0x 6726 An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
X𝑥 ∈ ∅ 𝐴 = {∅}
 
Theoremixpssmap2g 6727* An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 6728 avoids ax-coll 4119. (Contributed by Mario Carneiro, 16-Nov-2014.)
( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
 
Theoremixpssmapg 6728* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
(∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
 
Theorem0elixp 6729 Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
∅ ∈ X𝑥 ∈ ∅ 𝐴
 
Theoremixpm 6730* If an infinite Cartesian product of a family 𝐵(𝑥) is inhabited, every 𝐵(𝑥) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴𝑧 𝑧𝐵)
 
Theoremixp0 6731 The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. (Contributed by NM, 1-Oct-2006.) (Revised by Jim Kingdon, 16-Feb-2023.)
(∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpssmap 6732* An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
𝐵 ∈ V       X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴)
 
Theoremresixp 6733* Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
 
Theoremmptelixpg 6734* Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
(𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
 
Theoremelixpsn 6735* Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
(𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
 
Theoremixpsnf1o 6736* A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
 
Theoremmapsnf1o 6737* A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴𝑚 {𝐼}))
 
2.6.28  Equinumerosity
 
Syntaxcen 6738 Extend class definition to include the equinumerosity relation ("approximately equals" symbol)
class
 
Syntaxcdom 6739 Extend class definition to include the dominance relation (curly less-than-or-equal)
class
 
Syntaxcfn 6740 Extend class definition to include the class of all finite sets.
class Fin
 
Definitiondf-en 6741* Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6747. (Contributed by NM, 28-Mar-1998.)
≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
 
Definitiondf-dom 6742* Define the dominance relation. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 6750 and domen 6751. (Contributed by NM, 28-Mar-1998.)
≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
 
Definitiondf-fin 6743* Define the (proper) class of all finite sets. Similar to Definition 10.29 of [TakeutiZaring] p. 91, whose "Fin(a)" corresponds to our "𝑎 ∈ Fin". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 14731. (Contributed by NM, 22-Aug-2008.)
Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
 
Theoremrelen 6744 Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.)
Rel ≈
 
Theoremreldom 6745 Dominance is a relation. (Contributed by NM, 28-Mar-1998.)
Rel ≼
 
Theoremencv 6746 If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
(𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
 
Theorembren 6747* Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
(𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
 
Theorembrdomg 6748* Dominance relation. (Contributed by NM, 15-Jun-1998.)
(𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
 
Theorembrdomi 6749* Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
 
Theorembrdom 6750* Dominance relation. (Contributed by NM, 15-Jun-1998.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
 
Theoremdomen 6751* Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
𝐵 ∈ V       (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremdomeng 6752* Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
(𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
 
Theoremctex 6753 A class dominated by ω is a set. See also ctfoex 7117 which says that a countable class is a set. (Contributed by Thierry Arnoux, 29-Dec-2016.) (Proof shortened by Jim Kingdon, 13-Mar-2023.)
(𝐴 ≼ ω → 𝐴 ∈ V)
 
Theoremf1oen3g 6754 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6757 does not require the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐹𝑉𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1oen2g 6755 The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng 6757 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015.)
((𝐴𝑉𝐵𝑊𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1dom2g 6756 The domain of a one-to-one function is dominated by its codomain. This variation of f1domg 6758 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
((𝐴𝑉𝐵𝑊𝐹:𝐴1-1𝐵) → 𝐴𝐵)
 
Theoremf1oeng 6757 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
((𝐴𝐶𝐹:𝐴1-1-onto𝐵) → 𝐴𝐵)
 
Theoremf1domg 6758 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004.)
(𝐵𝐶 → (𝐹:𝐴1-1𝐵𝐴𝐵))
 
Theoremf1oen 6759 The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
𝐴 ∈ V       (𝐹:𝐴1-1-onto𝐵𝐴𝐵)
 
Theoremf1dom 6760 The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.)
𝐵 ∈ V       (𝐹:𝐴1-1𝐵𝐴𝐵)
 
Theoremisfi 6761* Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
(𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
 
Theoremenssdom 6762 Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
≈ ⊆ ≼
 
Theoremendom 6763 Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
(𝐴𝐵𝐴𝐵)
 
Theoremenrefg 6764 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝑉𝐴𝐴)
 
Theoremenref 6765 Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
𝐴 ∈ V       𝐴𝐴
 
Theoremeqeng 6766 Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
(𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))
 
Theoremdomrefg 6767 Dominance is reflexive. (Contributed by NM, 18-Jun-1998.)
(𝐴𝑉𝐴𝐴)
 
Theoremen2d 6768* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑥𝐴𝐶 ∈ V))    &   (𝜑 → (𝑦𝐵𝐷 ∈ V))    &   (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))       (𝜑𝐴𝐵)
 
Theoremen3d 6769* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
(𝜑𝐴 ∈ V)    &   (𝜑𝐵 ∈ V)    &   (𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → (𝑦𝐵𝐷𝐴))    &   (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))       (𝜑𝐴𝐵)
 
Theoremen2i 6770* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥𝐴𝐶 ∈ V)    &   (𝑦𝐵𝐷 ∈ V)    &   ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷))       𝐴𝐵
 
Theoremen3i 6771* Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 19-Jul-2004.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥𝐴𝐶𝐵)    &   (𝑦𝐵𝐷𝐴)    &   ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶))       𝐴𝐵
 
Theoremdom2lem 6772* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))       (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
 
Theoremdom2d 6773* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 20-May-2013.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))       (𝜑 → (𝐵𝑅𝐴𝐵))
 
Theoremdom3d 6774* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
(𝜑 → (𝑥𝐴𝐶𝐵))    &   (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑𝐴𝐵)
 
Theoremdom2 6775* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by NM, 26-Oct-2003.)
(𝑥𝐴𝐶𝐵)    &   ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))       (𝐵𝑉𝐴𝐵)
 
Theoremdom3 6776* A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
(𝑥𝐴𝐶𝐵)    &   ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))       ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
 
Theoremidssen 6777 Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
I ⊆ ≈
 
Theoremssdomg 6778 A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
(𝐵𝑉 → (𝐴𝐵𝐴𝐵))
 
Theoremener 6779 Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
≈ Er V
 
Theoremensymb 6780 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵𝐵𝐴)
 
Theoremensym 6781 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝐵𝐵𝐴)
 
Theoremensymi 6782 Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵       𝐵𝐴
 
Theoremensymd 6783 Symmetry of equinumerosity. Deduction form of ensym 6781. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑𝐵𝐴)
 
Theorementr 6784 Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomtr 6785 Transitivity of dominance relation. Theorem 17 of [Suppes] p. 94. (Contributed by NM, 4-Jun-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theorementri 6786 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐵𝐶       𝐴𝐶
 
Theorementr2i 6787 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐵𝐶       𝐶𝐴
 
Theorementr3i 6788 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐴𝐶       𝐵𝐶
 
Theorementr4i 6789 A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
𝐴𝐵    &   𝐶𝐵       𝐴𝐶
 
Theoremendomtr 6790 Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremdomentr 6791 Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremf1imaeng 6792 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
((𝐹:𝐴1-1𝐵𝐶𝐴𝐶𝑉) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen2g 6793 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6794 does not need ax-setind 4537.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
(((𝐹:𝐴1-1𝐵𝐵𝑉) ∧ (𝐶𝐴𝐶𝑉)) → (𝐹𝐶) ≈ 𝐶)
 
Theoremf1imaen 6794 A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
𝐶 ∈ V       ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)
 
Theoremen0 6795 The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
(𝐴 ≈ ∅ ↔ 𝐴 = ∅)
 
Theoremensn1 6796 A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
𝐴 ∈ V       {𝐴} ≈ 1o
 
Theoremensn1g 6797 A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.)
(𝐴𝑉 → {𝐴} ≈ 1o)
 
Theoremenpr1g 6798 {𝐴, 𝐴} has only one element. (Contributed by FL, 15-Feb-2010.)
(𝐴𝑉 → {𝐴, 𝐴} ≈ 1o)
 
Theoremen1 6799* A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
(𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremen1bg 6800 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
(𝐴𝑉 → (𝐴 ≈ 1o𝐴 = { 𝐴}))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >