Theorem List for Intuitionistic Logic Explorer - 6701-6800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | qseq2 6701 |
Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
|
| ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| |
| Theorem | elqsg 6702* |
Closed form of elqs 6703. (Contributed by Rodolfo Medina,
12-Oct-2010.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
| |
| Theorem | elqs 6703* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| |
| Theorem | elqsi 6704* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
| ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
| |
| Theorem | ecelqsg 6705 |
Membership of an equivalence class in a quotient set. (Contributed by
Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| |
| Theorem | ecelqsi 6706 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝑅 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ (𝐴 / 𝑅)) |
| |
| Theorem | ecopqsi 6707 |
"Closure" law for equivalence class of ordered pairs. (Contributed
by
NM, 25-Mar-1996.)
|
| ⊢ 𝑅 ∈ V & ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| |
| Theorem | qsexg 6708 |
A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by
Mario Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 / 𝑅) ∈ V) |
| |
| Theorem | qsex 6709 |
A quotient set exists. (Contributed by NM, 14-Aug-1995.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 / 𝑅) ∈ V |
| |
| Theorem | uniqs 6710 |
The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
|
| ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| |
| Theorem | qsss 6711 |
A quotient set is a set of subsets of the base set. (Contributed by
Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
| ⊢ (𝜑 → 𝑅 Er 𝐴) ⇒ ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| |
| Theorem | uniqs2 6712 |
The union of a quotient set. (Contributed by Mario Carneiro,
11-Jul-2014.)
|
| ⊢ (𝜑 → 𝑅 Er 𝐴)
& ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| |
| Theorem | snec 6713 |
The singleton of an equivalence class. (Contributed by NM,
29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
| |
| Theorem | ecqs 6714 |
Equivalence class in terms of quotient set. (Contributed by NM,
29-Jan-1999.)
|
| ⊢ 𝑅 ∈ V ⇒ ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
| |
| Theorem | ecid 6715 |
A set is equal to its converse epsilon coset. (Note: converse epsilon
is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ [𝐴]◡
E = 𝐴 |
| |
| Theorem | ecidg 6716 |
A set is equal to its converse epsilon coset. (Note: converse epsilon
is not an equivalence relation.) (Contributed by Jim Kingdon,
8-Jan-2020.)
|
| ⊢ (𝐴 ∈ 𝑉 → [𝐴]◡
E = 𝐴) |
| |
| Theorem | qsid 6717 |
A set is equal to its quotient set mod converse epsilon. (Note:
converse epsilon is not an equivalence relation.) (Contributed by NM,
13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 / ◡ E ) = 𝐴 |
| |
| Theorem | ectocld 6718* |
Implicit substitution of class for equivalence class. (Contributed by
Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝑆 = (𝐵 / 𝑅)
& ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) ⇒ ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| |
| Theorem | ectocl 6719* |
Implicit substitution of class for equivalence class. (Contributed by
NM, 23-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝑆 = (𝐵 / 𝑅)
& ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ 𝐵 → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| |
| Theorem | elqsn0m 6720* |
An element of a quotient set is inhabited. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
| ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
| |
| Theorem | elqsn0 6721 |
A quotient set doesn't contain the empty set. (Contributed by NM,
24-Aug-1995.)
|
| ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅) |
| |
| Theorem | ecelqsdm 6722 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 30-Jul-1995.)
|
| ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) |
| |
| Theorem | xpider 6723 |
A square Cartesian product is an equivalence relation (in general it's not
a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
| ⊢ (𝐴 × 𝐴) Er 𝐴 |
| |
| Theorem | iinerm 6724* |
The intersection of a nonempty family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
| ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
| |
| Theorem | riinerm 6725* |
The relative intersection of a family of equivalence relations is an
equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
|
| ⊢ ((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ ∩
𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
| |
| Theorem | erinxp 6726 |
A restricted equivalence relation is an equivalence relation.
(Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
| ⊢ (𝜑 → 𝑅 Er 𝐴)
& ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) |
| |
| Theorem | ecinxp 6727 |
Restrict the relation in an equivalence class to a base set. (Contributed
by Mario Carneiro, 10-Jul-2015.)
|
| ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
| |
| Theorem | qsinxp 6728 |
Restrict the equivalence relation in a quotient set to the base set.
(Contributed by Mario Carneiro, 23-Feb-2015.)
|
| ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
| |
| Theorem | qsel 6729 |
If an element of a quotient set contains a given element, it is equal to
the equivalence class of the element. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
| ⊢ ((𝑅 Er 𝑋 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
| |
| Theorem | qliftlem 6730* |
𝐹,
a function lift, is a subset of 𝑅 × 𝑆. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| |
| Theorem | qliftrel 6731* |
𝐹,
a function lift, is a subset of 𝑅 × 𝑆. (Contributed by
Mario Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → 𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌)) |
| |
| Theorem | qliftel 6732* |
Elementhood in the relation 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
| |
| Theorem | qliftel1 6733* |
Elementhood in the relation 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅𝐹𝐴) |
| |
| Theorem | qliftfun 6734* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝐴 = 𝐵))) |
| |
| Theorem | qliftfund 6735* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition
holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Fun 𝐹) |
| |
| Theorem | qliftfuns 6736* |
The function 𝐹 is the unique function defined by
𝐹‘[𝑥] = 𝐴, provided that the well-definedness
condition holds.
(Contributed by Mario Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
| |
| Theorem | qliftf 6737* |
The domain and codomain of the function 𝐹. (Contributed by Mario
Carneiro, 23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) ⇒ ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
| |
| Theorem | qliftval 6738* |
The value of the function 𝐹. (Contributed by Mario Carneiro,
23-Dec-2016.)
|
| ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌)
& ⊢ (𝜑 → 𝑅 Er 𝑋)
& ⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵)
& ⊢ (𝜑 → Fun 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
| |
| Theorem | ecoptocl 6739* |
Implicit substitution of class for equivalence class of ordered pair.
(Contributed by NM, 23-Jul-1995.)
|
| ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) ⇒ ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| |
| Theorem | 2ecoptocl 6740* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 23-Jul-1995.)
|
| ⊢ 𝑆 = ((𝐶 × 𝐷) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 𝜒) |
| |
| Theorem | 3ecoptocl 6741* |
Implicit substitution of classes for equivalence classes of ordered
pairs. (Contributed by NM, 9-Aug-1995.)
|
| ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅)
& ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) & ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| |
| Theorem | brecop 6742* |
Binary relation on a quotient set. Lemma for real number construction.
(Contributed by NM, 29-Jan-1996.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝐺 × 𝐺)
& ⊢ 𝐻 = ((𝐺 × 𝐺) / ∼ ) & ⊢ ≤ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ∼ ∧ 𝑦 = [〈𝑣, 𝑢〉] ∼ ) ∧ 𝜑))} & ⊢ ((((𝑧 ∈ 𝐺 ∧ 𝑤 ∈ 𝐺) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺)) ∧ ((𝑣 ∈ 𝐺 ∧ 𝑢 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺))) → (([〈𝑧, 𝑤〉] ∼ = [〈𝐴, 𝐵〉] ∼ ∧ [〈𝑣, 𝑢〉] ∼ = [〈𝐶, 𝐷〉] ∼ ) → (𝜑 ↔ 𝜓))) ⇒ ⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐺) ∧ (𝐶 ∈ 𝐺 ∧ 𝐷 ∈ 𝐺)) → ([〈𝐴, 𝐵〉] ∼ ≤ [〈𝐶, 𝐷〉] ∼ ↔ 𝜓)) |
| |
| Theorem | eroveu 6743* |
Lemma for eroprf 6745. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → ∃!𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑋 = [𝑝]𝑅 ∧ 𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) |
| |
| Theorem | erovlem 6744* |
Lemma for eroprf 6745. (Contributed by Jeff Madsen, 10-Jun-2010.)
(Revised by Mario Carneiro, 30-Dec-2014.)
|
| ⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} ⇒ ⊢ (𝜑 → ⨣ = (𝑥 ∈ 𝐽, 𝑦 ∈ 𝐾 ↦ (℩𝑧∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))) |
| |
| Theorem | eroprf 6745* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro,
30-Dec-2014.)
|
| ⊢ 𝐽 = (𝐴 / 𝑅)
& ⊢ 𝐾 = (𝐵 / 𝑆)
& ⊢ (𝜑 → 𝑇 ∈ 𝑍)
& ⊢ (𝜑 → 𝑅 Er 𝑈)
& ⊢ (𝜑 → 𝑆 Er 𝑉)
& ⊢ (𝜑 → 𝑇 Er 𝑊)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → 𝐵 ⊆ 𝑉)
& ⊢ (𝜑 → 𝐶 ⊆ 𝑊)
& ⊢ (𝜑 → + :(𝐴 × 𝐵)⟶𝐶)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵))) → ((𝑟𝑅𝑠 ∧ 𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢))) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐵 ((𝑥 = [𝑝]𝑅 ∧ 𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} & ⊢ (𝜑 → 𝑅 ∈ 𝑋)
& ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ 𝐿 = (𝐶 / 𝑇) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐾)⟶𝐿) |
| |
| Theorem | eroprf2 6746* |
Functionality of an operation defined on equivalence classes.
(Contributed by Jeff Madsen, 10-Jun-2010.)
|
| ⊢ 𝐽 = (𝐴 / ∼ ) & ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑥 = [𝑝] ∼ ∧ 𝑦 = [𝑞] ∼ ) ∧ 𝑧 = [(𝑝 + 𝑞)] ∼ )} & ⊢ (𝜑 → ∼ ∈ 𝑋) & ⊢ (𝜑 → ∼ Er 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈)
& ⊢ (𝜑 → + :(𝐴 × 𝐴)⟶𝐴)
& ⊢ ((𝜑 ∧ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ (𝑡 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴))) → ((𝑟 ∼ 𝑠 ∧ 𝑡 ∼ 𝑢) → (𝑟 + 𝑡) ∼ (𝑠 + 𝑢))) ⇒ ⊢ (𝜑 → ⨣ :(𝐽 × 𝐽)⟶𝐽) |
| |
| Theorem | ecopoveq 6747* |
This is the first of several theorems about equivalence relations of
the kind used in construction of fractions and signed reals, involving
operations on equivalent classes of ordered pairs. This theorem
expresses the relation ∼ (specified
by the hypothesis) in terms
of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
| |
| Theorem | ecopovsym 6748* |
Assuming the operation 𝐹 is commutative, show that the
relation
∼, specified
by the first hypothesis, is symmetric.
(Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) |
| |
| Theorem | ecopovtrn 6749* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is transitive.
(Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro,
26-Apr-2015.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |
| |
| Theorem | ecopover 6750* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ (𝑥 + 𝑦) = (𝑦 + 𝑥)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
| |
| Theorem | ecopovsymg 6751* |
Assuming the operation 𝐹 is commutative, show that the
relation
∼, specified
by the first hypothesis, is symmetric.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝐴 ∼ 𝐵 → 𝐵 ∼ 𝐴) |
| |
| Theorem | ecopovtrng 6752* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is transitive.
(Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ((𝐴 ∼ 𝐵 ∧ 𝐵 ∼ 𝐶) → 𝐴 ∼ 𝐶) |
| |
| Theorem | ecopoverg 6753* |
Assuming that operation 𝐹 is commutative (second hypothesis),
closed (third hypothesis), associative (fourth hypothesis), and has
the cancellation property (fifth hypothesis), show that the relation
∼, specified
by the first hypothesis, is an equivalence
relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
|
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧)) ⇒ ⊢ ∼ Er (𝑆 × 𝑆) |
| |
| Theorem | th3qlem1 6754* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The
third hypothesis is the compatibility assumption. (Contributed by NM,
3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ ∼ Er 𝑆 & ⊢ (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆)) → ((𝑦 ∼ 𝑤 ∧ 𝑧 ∼ 𝑣) → (𝑦 + 𝑧) ∼ (𝑤 + 𝑣))) ⇒ ⊢ ((𝐴 ∈ (𝑆 / ∼ ) ∧ 𝐵 ∈ (𝑆 / ∼ )) →
∃*𝑥∃𝑦∃𝑧((𝐴 = [𝑦] ∼ ∧ 𝐵 = [𝑧] ∼ ) ∧ 𝑥 = [(𝑦 + 𝑧)] ∼
)) |
| |
| Theorem | th3qlem2 6755* |
Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60,
extended to operations on ordered pairs. The fourth hypothesis is the
compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) ⇒ ⊢ ((𝐴 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / ∼ )) →
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ∼ ∧ 𝐵 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
)) |
| |
| Theorem | th3qcor 6756* |
Corollary of Theorem 3Q of [Enderton] p. 60.
(Contributed by NM,
12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ Fun 𝐺 |
| |
| Theorem | th3q 6757* |
Theorem 3Q of [Enderton] p. 60, extended to
operations on ordered
pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro,
19-Dec-2013.)
|
| ⊢ ∼ ∈
V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ((((𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑢 ∈ 𝑆 ∧ 𝑡 ∈ 𝑆)) ∧ ((𝑠 ∈ 𝑆 ∧ 𝑓 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆))) → ((〈𝑤, 𝑣〉 ∼ 〈𝑢, 𝑡〉 ∧ 〈𝑠, 𝑓〉 ∼ 〈𝑔, ℎ〉) → (〈𝑤, 𝑣〉 + 〈𝑠, 𝑓〉) ∼ (〈𝑢, 𝑡〉 + 〈𝑔, ℎ〉))) & ⊢ 𝐺 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ∼ ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / ∼ )) ∧
∃𝑤∃𝑣∃𝑢∃𝑡((𝑥 = [〈𝑤, 𝑣〉] ∼ ∧ 𝑦 = [〈𝑢, 𝑡〉] ∼ ) ∧ 𝑧 = [(〈𝑤, 𝑣〉 + 〈𝑢, 𝑡〉)] ∼
))} ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ 𝐺[〈𝐶, 𝐷〉] ∼ ) = [(〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉)] ∼ ) |
| |
| Theorem | oviec 6758* |
Express an operation on equivalence classes of ordered pairs in terms of
equivalence class of operations on ordered pairs. See iset.mm for
additional comments describing the hypotheses. (Unnecessary distinct
variable restrictions were removed by David Abernethy, 4-Jun-2013.)
(Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro,
4-Jun-2013.)
|
| ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝐻 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆)) → 𝐾 ∈ (𝑆 × 𝑆)) & ⊢ (((𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆)) → 𝐿 ∈ (𝑆 × 𝑆)) & ⊢ ∼
∈ V
& ⊢ ∼ Er (𝑆 × 𝑆)
& ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ 𝜑))} & ⊢ (((𝑧 = 𝑎 ∧ 𝑤 = 𝑏) ∧ (𝑣 = 𝑐 ∧ 𝑢 = 𝑑)) → (𝜑 ↔ 𝜓)) & ⊢ (((𝑧 = 𝑔 ∧ 𝑤 = ℎ) ∧ (𝑣 = 𝑡 ∧ 𝑢 = 𝑠)) → (𝜑 ↔ 𝜒)) & ⊢ + =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝐽))} & ⊢ (((𝑤 = 𝑎 ∧ 𝑣 = 𝑏) ∧ (𝑢 = 𝑔 ∧ 𝑓 = ℎ)) → 𝐽 = 𝐾)
& ⊢ (((𝑤 = 𝑐 ∧ 𝑣 = 𝑑) ∧ (𝑢 = 𝑡 ∧ 𝑓 = 𝑠)) → 𝐽 = 𝐿)
& ⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝐽 = 𝐻)
& ⊢ ⨣ =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑄) ∧ ∃𝑎∃𝑏∃𝑐∃𝑑((𝑥 = [〈𝑎, 𝑏〉] ∼ ∧ 𝑦 = [〈𝑐, 𝑑〉] ∼ ) ∧ 𝑧 = [(〈𝑎, 𝑏〉 + 〈𝑐, 𝑑〉)] ∼ ))} & ⊢ 𝑄 = ((𝑆 × 𝑆) / ∼ ) & ⊢ ((((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) ∧ (𝑐 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) ∧ ((𝑔 ∈ 𝑆 ∧ ℎ ∈ 𝑆) ∧ (𝑡 ∈ 𝑆 ∧ 𝑠 ∈ 𝑆))) → ((𝜓 ∧ 𝜒) → 𝐾 ∼ 𝐿)) ⇒ ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ([〈𝐴, 𝐵〉] ∼ ⨣ [〈𝐶, 𝐷〉] ∼ ) = [𝐻] ∼ ) |
| |
| Theorem | ecovcom 6759* |
Lemma used to transfer a commutative law via an equivalence relation.
Most uses will want ecovicom 6760 instead. (Contributed by NM,
29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ 𝐷 = 𝐻
& ⊢ 𝐺 = 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | ecovicom 6760* |
Lemma used to transfer a commutative law via an equivalence relation.
(Contributed by Jim Kingdon, 15-Sep-2019.)
|
| ⊢ 𝐶 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐷, 𝐺〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑥, 𝑦〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐷 = 𝐻)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐺 = 𝐽) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | ecovass 6761* |
Lemma used to transfer an associative law via an equivalence relation.
In most cases ecoviass 6762 will be more useful. (Contributed by NM,
31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ 𝐽 = 𝐿
& ⊢ 𝐾 = 𝑀 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| |
| Theorem | ecoviass 6762* |
Lemma used to transfer an associative law via an equivalence relation.
(Contributed by Jim Kingdon, 16-Sep-2019.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑧, 𝑤〉] ∼ ) = [〈𝐺, 𝐻〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑁, 𝑄〉] ∼ ) & ⊢ (((𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝐺, 𝐻〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝐽, 𝐾〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ + [〈𝑁, 𝑄〉] ∼ ) = [〈𝐿, 𝑀〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑁 ∈ 𝑆 ∧ 𝑄 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐾 = 𝑀) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| |
| Theorem | ecovdi 6763* |
Lemma used to transfer a distributive law via an equivalence relation.
Most likely ecovidi 6764 will be more helpful. (Contributed by NM,
2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ 𝐻 = 𝐾
& ⊢ 𝐽 = 𝐿 ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| |
| Theorem | ecovidi 6764* |
Lemma used to transfer a distributive law via an equivalence relation.
(Contributed by Jim Kingdon, 17-Sep-2019.)
|
| ⊢ 𝐷 = ((𝑆 × 𝑆) / ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑧, 𝑤〉] ∼ + [〈𝑣, 𝑢〉] ∼ ) = [〈𝑀, 𝑁〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑀, 𝑁〉] ∼ ) = [〈𝐻, 𝐽〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑧, 𝑤〉] ∼ ) = [〈𝑊, 𝑋〉] ∼ ) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → ([〈𝑥, 𝑦〉] ∼ · [〈𝑣, 𝑢〉] ∼ ) = [〈𝑌, 𝑍〉] ∼ ) & ⊢ (((𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) → ([〈𝑊, 𝑋〉] ∼ + [〈𝑌, 𝑍〉] ∼ ) = [〈𝐾, 𝐿〉] ∼ ) & ⊢ (((𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑊 ∈ 𝑆 ∧ 𝑋 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → (𝑌 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆)) & ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐻 = 𝐾)
& ⊢ (((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆)) → 𝐽 = 𝐿) ⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| |
| 2.6.26 The mapping operation
|
| |
| Syntax | cmap 6765 |
Extend the definition of a class to include the mapping operation. (Read
for 𝐴
↑𝑚 𝐵, "the set of all functions that
map from 𝐵 to
𝐴.)
|
| class ↑𝑚 |
| |
| Syntax | cpm 6766 |
Extend the definition of a class to include the partial mapping operation.
(Read for 𝐴 ↑pm 𝐵, "the set of all
partial functions that map from
𝐵 to 𝐴.)
|
| class ↑pm |
| |
| Definition | df-map 6767* |
Define the mapping operation or set exponentiation. The set of all
functions that map from 𝐵 to 𝐴 is written (𝐴
↑𝑚 𝐵) (see
mapval 6777). Many authors write 𝐴 followed by 𝐵 as a
superscript
for this operation and rely on context to avoid confusion other
exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring]
p. 95). Other authors show 𝐵 as a prefixed superscript, which is
read "𝐴 pre 𝐵 " (e.g., definition
of [Enderton] p. 52).
Definition 8.21 of [Eisenberg] p. 125
uses the notation Map(𝐵,
𝐴) for our (𝐴 ↑𝑚
𝐵). The up-arrow is
used by Donald Knuth
for iterated exponentiation (Science 194, 1235-1242, 1976). We
adopt
the first case of his notation (simple exponentiation) and subscript it
with m to distinguish it from other kinds of exponentiation.
(Contributed by NM, 8-Dec-2003.)
|
| ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
| |
| Definition | df-pm 6768* |
Define the partial mapping operation. A partial function from 𝐵 to
𝐴 is a function from a subset of 𝐵 to
𝐴.
The set of all
partial functions from 𝐵 to 𝐴 is written (𝐴
↑pm 𝐵) (see
pmvalg 6776). A notation for this operation apparently
does not appear in
the literature. We use ↑pm to distinguish it from the less
general
set exponentiation operation ↑𝑚 (df-map 6767) . See mapsspm 6799 for
its relationship to set exponentiation. (Contributed by NM,
15-Nov-2007.)
|
| ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
| |
| Theorem | mapprc 6769* |
When 𝐴 is a proper class, the class of all
functions mapping 𝐴
to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed
by NM, 8-Dec-2003.)
|
| ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| |
| Theorem | pmex 6770* |
The class of all partial functions from one set to another is a set.
(Contributed by NM, 15-Nov-2007.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
| |
| Theorem | mapex 6771* |
The class of all functions mapping one set to another is a set. Remark
after Definition 10.24 of [Kunen] p. 31.
(Contributed by Raph Levien,
4-Dec-2003.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∈ V) |
| |
| Theorem | fnmap 6772 |
Set exponentiation has a universal domain. (Contributed by NM,
8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
| ⊢ ↑𝑚 Fn (V ×
V) |
| |
| Theorem | fnpm 6773 |
Partial function exponentiation has a universal domain. (Contributed by
Mario Carneiro, 14-Nov-2013.)
|
| ⊢ ↑pm Fn (V ×
V) |
| |
| Theorem | reldmmap 6774 |
Set exponentiation is a well-behaved binary operator. (Contributed by
Stefan O'Rear, 27-Feb-2015.)
|
| ⊢ Rel dom
↑𝑚 |
| |
| Theorem | mapvalg 6775* |
The value of set exponentiation. (𝐴 ↑𝑚 𝐵) is the set of all
functions that map from 𝐵 to 𝐴. Definition 10.24 of
[Kunen]
p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴}) |
| |
| Theorem | pmvalg 6776* |
The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set
of all partial functions that map from 𝐵 to 𝐴.
(Contributed by
NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| |
| Theorem | mapval 6777* |
The value of set exponentiation (inference version). (𝐴 ↑𝑚
𝐵) is
the set of all functions that map from 𝐵 to 𝐴.
Definition
10.24 of [Kunen] p. 24. (Contributed by
NM, 8-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = {𝑓 ∣ 𝑓:𝐵⟶𝐴} |
| |
| Theorem | elmapg 6778 |
Membership relation for set exponentiation. (Contributed by NM,
17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| |
| Theorem | elmapd 6779 |
Deduction form of elmapg 6778. (Contributed by BJ, 11-Apr-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| |
| Theorem | mapdm0 6780 |
The empty set is the only map with empty domain. (Contributed by Glauco
Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux,
3-Dec-2021.)
|
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑𝑚 ∅) =
{∅}) |
| |
| Theorem | elpmg 6781 |
The predicate "is a partial function". (Contributed by Mario
Carneiro,
14-Nov-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
| |
| Theorem | elpm2g 6782 |
The predicate "is a partial function". (Contributed by NM,
31-Dec-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) |
| |
| Theorem | elpm2r 6783 |
Sufficient condition for being a partial function. (Contributed by NM,
31-Dec-2013.)
|
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
| |
| Theorem | elpmi 6784 |
A partial function is a function. (Contributed by Mario Carneiro,
15-Sep-2015.)
|
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| |
| Theorem | pmfun 6785 |
A partial function is a function. (Contributed by Mario Carneiro,
30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
|
| ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → Fun 𝐹) |
| |
| Theorem | elmapex 6786 |
Eliminate antecedent for mapping theorems: domain can be taken to be a
set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
| |
| Theorem | elmapi 6787 |
A mapping is a function, forward direction only with superfluous
antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) |
| |
| Theorem | elmapfn 6788 |
A mapping is a function with the appropriate domain. (Contributed by AV,
6-Apr-2019.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴 Fn 𝐶) |
| |
| Theorem | elmapfun 6789 |
A mapping is always a function. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
|
| ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → Fun 𝐴) |
| |
| Theorem | elmapssres 6790 |
A restricted mapping is a mapping. (Contributed by Stefan O'Rear,
9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
|
| ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷)) |
| |
| Theorem | fpmg 6791 |
A total function is a partial function. (Contributed by Mario Carneiro,
31-Dec-2013.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| |
| Theorem | pmss12g 6792 |
Subset relation for the set of partial functions. (Contributed by Mario
Carneiro, 31-Dec-2013.)
|
| ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
| |
| Theorem | pmresg 6793 |
Elementhood of a restricted function in the set of partial functions.
(Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹 ∈ (𝐴 ↑pm 𝐶)) → (𝐹 ↾ 𝐵) ∈ (𝐴 ↑pm 𝐵)) |
| |
| Theorem | elmap 6794 |
Membership relation for set exponentiation. (Contributed by NM,
8-Dec-2003.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐹:𝐵⟶𝐴) |
| |
| Theorem | mapval2 6795* |
Alternate expression for the value of set exponentiation. (Contributed
by NM, 3-Nov-2007.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴 ↑𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓 ∣ 𝑓 Fn 𝐵}) |
| |
| Theorem | elpm 6796 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (𝐵 × 𝐴))) |
| |
| Theorem | elpm2 6797 |
The predicate "is a partial function". (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
| |
| Theorem | fpm 6798 |
A total function is a partial function. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
| |
| Theorem | mapsspm 6799 |
Set exponentiation is a subset of partial maps. (Contributed by NM,
15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
|
| ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| |
| Theorem | pmsspw 6800 |
Partial maps are a subset of the power set of the Cartesian product of
its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
|
| ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |