![]() |
Intuitionistic Logic Explorer Theorem List (p. 68 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | domfiexmid 6701* | If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.) |
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | dif1en 6702 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | dif1enen 6703 | Subtracting one element from each of two equinumerous finite sets. (Contributed by Jim Kingdon, 5-Jun-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ {𝐶}) ≈ (𝐵 ∖ {𝐷})) | ||
Theorem | fiunsnnn 6704 | Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) | ||
Theorem | php5fin 6705 | A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) | ||
Theorem | fisbth 6706 | Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.) |
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
Theorem | 0fin 6707 | The empty set is finite. (Contributed by FL, 14-Jul-2008.) |
⊢ ∅ ∈ Fin | ||
Theorem | fin0 6708* | A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.) |
⊢ (𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | fin0or 6709* | A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.) |
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝐴)) | ||
Theorem | diffitest 6710* | If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.) |
⊢ ∀𝑎 ∈ Fin ∀𝑏(𝑎 ∖ 𝑏) ∈ Fin ⇒ ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | ||
Theorem | findcard 6711* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2 6712* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2s 6713* | Variation of findcard2 6712 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2d 6714* | Deduction version of findcard2 6712. If you also need 𝑦 ∈ Fin (which doesn't come for free due to ssfiexmid 6699), use findcard2sd 6715 instead. (Contributed by SO, 16-Jul-2018.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | findcard2sd 6715* | Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | diffisn 6716 | Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin) | ||
Theorem | diffifi 6717 | Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ Fin) | ||
Theorem | infnfi 6718 | An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) | ||
Theorem | ominf 6719 | The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6591. (Contributed by NM, 2-Jun-1998.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | isinfinf 6720* | An infinite set contains subsets of arbitrarily large finite cardinality. (Contributed by Jim Kingdon, 15-Jun-2022.) |
⊢ (ω ≼ 𝐴 → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | ac6sfi 6721* | Existence of a choice function for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | tridc 6722* | A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → DECID 𝐵𝑅𝐶) | ||
Theorem | fimax2gtrilemstep 6723* | Lemma for fimax2gtri 6724. The induction step. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑉 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑉 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑦 ∈ 𝑈 ¬ 𝑍𝑅𝑦) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝑈 ∪ {𝑉}) ¬ 𝑥𝑅𝑦) | ||
Theorem | fimax2gtri 6724* | A finite set has a maximum under a trichotomous order. (Contributed by Jim Kingdon, 5-Sep-2022.) |
⊢ (𝜑 → 𝑅 Po 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
Theorem | finexdc 6725* | Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → DECID ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | dfrex2fin 6726* | Relationship between universal and existential quantifiers over a finite set. Remark in Section 2.2.1 of [Pierik], p. 8. Although Pierik does not mention the decidability condition explicitly, it does say "only finitely many x to check" which means there must be some way of checking each value of x. (Contributed by Jim Kingdon, 11-Jul-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝜑) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑)) | ||
Theorem | infm 6727* | An infinite set is inhabited. (Contributed by Jim Kingdon, 18-Feb-2022.) |
⊢ (ω ≼ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | infn0 6728 | An infinite set is not empty. (Contributed by NM, 23-Oct-2004.) |
⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | inffiexmid 6729* | If any given set is either finite or infinite, excluded middle follows. (Contributed by Jim Kingdon, 15-Jun-2022.) |
⊢ (𝑥 ∈ Fin ∨ ω ≼ 𝑥) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | en2eqpr 6730 | Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) | ||
Theorem | exmidpw 6731 | Excluded middle is equivalent to the power set of 1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.) |
⊢ (EXMID ↔ 𝒫 1o ≈ 2o) | ||
Theorem | fientri3 6732 | Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
Theorem | nnwetri 6733* | A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
⊢ (𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥))) | ||
Theorem | onunsnss 6734 | Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.) |
⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵 ⊆ 𝐴) | ||
Theorem | unfiexmid 6735* | If the union of any two finite sets is finite, excluded middle follows. Remark 8.1.17 of [AczelRathjen], p. 74. (Contributed by Mario Carneiro and Jim Kingdon, 5-Mar-2022.) |
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) ⇒ ⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | unsnfi 6736 | Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | ||
Theorem | unsnfidcex 6737 | The 𝐵 ∈ 𝑉 condition in unsnfi 6736. This is intended to show that unsnfi 6736 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V) | ||
Theorem | unsnfidcel 6738 | The ¬ 𝐵 ∈ 𝐴 condition in unsnfi 6736. This is intended to show that unsnfi 6736 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ 𝐴) | ||
Theorem | unfidisj 6739 | The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | undifdcss 6740* | Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.) |
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵)) | ||
Theorem | undifdc 6741* | Union of complementary parts into whole. This is a case where we can strengthen undifss 3390 from subset to equality. (Contributed by Jim Kingdon, 17-Jun-2022.) |
⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) | ||
Theorem | undiffi 6742 | Union of complementary parts into whole. This is a case where we can strengthen undifss 3390 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) | ||
Theorem | unfiin 6743 | The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | prfidisj 6744 | A pair is finite if it consists of two unequal sets. For the case where 𝐴 = 𝐵, see snfig 6638. For the cases where one or both is a proper class, see prprc1 3578, prprc2 3579, or prprc 3580. (Contributed by Jim Kingdon, 31-May-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | ||
Theorem | tpfidisj 6745 | A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) | ||
Theorem | fiintim 6746* |
If a class is closed under pairwise intersections, then it is closed
under nonempty finite intersections. The converse would appear to
require an additional condition, such as 𝑥 and 𝑦 not
being
equal, or 𝐴 having decidable equality.
This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use a pairwise intersection and some texts use a finite intersection, but most topology texts assume excluded middle (in which case the two intersection properties would be equivalent). (Contributed by NM, 22-Sep-2002.) (Revised by Jim Kingdon, 14-Jan-2023.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 → ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
Theorem | xpfi 6747 | The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
Theorem | 3xpfi 6748 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
Theorem | fisseneq 6749 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ssfirab 6750* | A subset of a finite set is finite if it is defined by a decidable property. (Contributed by Jim Kingdon, 27-May-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝜓) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ Fin) | ||
Theorem | ssfidc 6751* | A subset of a finite set is finite if membership in the subset is decidable. (Contributed by Jim Kingdon, 27-May-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐵 ∈ Fin) | ||
Theorem | snon0 6752 | An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) | ||
Theorem | fnfi 6753 | A version of fnex 5574 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
Theorem | fundmfi 6754 | The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin) | ||
Theorem | fundmfibi 6755 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
Theorem | resfnfinfinss 6756 | The restriction of a function to a finite subset of its domain is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
Theorem | relcnvfi 6757 | If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.) |
⊢ ((Rel 𝐴 ∧ 𝐴 ∈ Fin) → ◡𝐴 ∈ Fin) | ||
Theorem | funrnfi 6758 | The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.) |
⊢ ((Rel 𝐴 ∧ Fun ◡𝐴 ∧ 𝐴 ∈ Fin) → ran 𝐴 ∈ Fin) | ||
Theorem | f1ofi 6759 | If a 1-1 and onto function has a finite domain, its range is finite. (Contributed by Jim Kingdon, 21-Feb-2022.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | ||
Theorem | f1dmvrnfibi 6760 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 6761. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | f1vrnfibi 6761 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6760. (Contributed by AV, 10-Jan-2020.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
Theorem | iunfidisj 6762* | The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ Disj 𝑥 ∈ 𝐴 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
Theorem | f1finf1o 6763 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
Theorem | en1eqsn 6764 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
Theorem | en1eqsnbi 6765 | A set containing an element has exactly one element iff it is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
Theorem | snexxph 6766* | A case where the antecedent of snexg 4048 is not needed. The class {𝑥 ∣ 𝜑} is from dcextest 4433. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
⊢ {{𝑥 ∣ 𝜑}} ∈ V | ||
Theorem | preimaf1ofi 6767 | The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → (◡𝐹 “ 𝐶) ∈ Fin) | ||
Theorem | fidcenumlemim 6768* | Lemma for fidcenum 6772. Forward direction. (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
Theorem | fidcenumlemrks 6769* | Lemma for fidcenum 6772. Induction step for fidcenumlemrk 6770. (Contributed by Jim Kingdon, 20-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐽 ∈ ω) & ⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) & ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) | ||
Theorem | fidcenumlemrk 6770* | Lemma for fidcenum 6772. (Contributed by Jim Kingdon, 20-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝐾 ∈ ω) & ⊢ (𝜑 → 𝐾 ⊆ 𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐾) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐾))) | ||
Theorem | fidcenumlemr 6771* | Lemma for fidcenum 6772. Reverse direction (put into deduction form). (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) & ⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) & ⊢ (𝜑 → 𝑁 ∈ ω) ⇒ ⊢ (𝜑 → 𝐴 ∈ Fin) | ||
Theorem | fidcenum 6772* | A set is finite if and only if it has decidable equality and is finitely enumerable. Proposition 8.1.11 of [AczelRathjen], p. 72. The definition of "finitely enumerable" as ∃𝑛 ∈ ω∃𝑓𝑓:𝑛–onto→𝐴 is Definition 8.1.4 of [AczelRathjen], p. 71. (Contributed by Jim Kingdon, 19-Oct-2022.) |
⊢ (𝐴 ∈ Fin ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑛 ∈ ω ∃𝑓 𝑓:𝑛–onto→𝐴)) | ||
Theorem | sbthlem1 6773* | Lemma for isbth 6783. (Contributed by NM, 22-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | ||
Theorem | sbthlem2 6774* | Lemma for isbth 6783. (Contributed by NM, 22-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) | ||
Theorem | sbthlemi3 6775* | Lemma for isbth 6783. (Contributed by NM, 22-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) | ||
Theorem | sbthlemi4 6776* | Lemma for isbth 6783. (Contributed by NM, 27-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} ⇒ ⊢ ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | ||
Theorem | sbthlemi5 6777* | Lemma for isbth 6783. (Contributed by NM, 22-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → dom 𝐻 = 𝐴) | ||
Theorem | sbthlemi6 6778* | Lemma for isbth 6783. (Contributed by NM, 27-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) | ||
Theorem | sbthlem7 6779* | Lemma for isbth 6783. (Contributed by NM, 27-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((Fun 𝑓 ∧ Fun ◡𝑔) → Fun 𝐻) | ||
Theorem | sbthlemi8 6780* | Lemma for isbth 6783. (Contributed by NM, 27-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ (((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) | ||
Theorem | sbthlemi9 6781* | Lemma for isbth 6783. (Contributed by NM, 28-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ⇒ ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) | ||
Theorem | sbthlemi10 6782* | Lemma for isbth 6783. (Contributed by NM, 28-Mar-1998.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
Theorem | isbth 6783 | Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6773 through sbthlemi10 6782; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6782. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 12802. (Contributed by NM, 8-Jun-1998.) |
⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) | ||
Syntax | csup 6784 | Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
class sup(𝐴, 𝐵, 𝑅) | ||
Syntax | cinf 6785 | Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
class inf(𝐴, 𝐵, 𝑅) | ||
Definition | df-sup 6786* | Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. (Contributed by NM, 22-May-1999.) |
⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | ||
Definition | df-inf 6787 | Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.) |
⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | ||
Theorem | supeq1 6788 | Equality theorem for supremum. (Contributed by NM, 22-May-1999.) |
⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
Theorem | supeq1d 6789 | Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
Theorem | supeq1i 6790 | Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐵 = 𝐶 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) | ||
Theorem | supeq2 6791 | Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) | ||
Theorem | supeq3 6792 | Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆)) | ||
Theorem | supeq123d 6793 | Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹)) | ||
Theorem | nfsup 6794 | Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | ||
Theorem | supmoti 6795* | Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7715) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
Theorem | supeuti 6796* | A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
Theorem | supval2ti 6797* | Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | ||
Theorem | eqsupti 6798* | Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
Theorem | eqsuptid 6799* | Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | supclti 6800* | A supremum belongs to its base class (closure law). See also supubti 6801 and suplubti 6802. (Contributed by Jim Kingdon, 24-Nov-2021.) |
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |