Detailed syntax breakdown of Axiom ax-inf2
Step | Hyp | Ref
| Expression |
1 | | vx |
. . . . 5
setvar 𝑥 |
2 | | va |
. . . . 5
setvar 𝑎 |
3 | 1, 2 | wel 2137 |
. . . 4
wff 𝑥 ∈ 𝑎 |
4 | 1 | cv 1342 |
. . . . . 6
class 𝑥 |
5 | | c0 3409 |
. . . . . 6
class
∅ |
6 | 4, 5 | wceq 1343 |
. . . . 5
wff 𝑥 = ∅ |
7 | | vy |
. . . . . . . . 9
setvar 𝑦 |
8 | 7 | cv 1342 |
. . . . . . . 8
class 𝑦 |
9 | 8 | csuc 4343 |
. . . . . . 7
class suc 𝑦 |
10 | 4, 9 | wceq 1343 |
. . . . . 6
wff 𝑥 = suc 𝑦 |
11 | 2 | cv 1342 |
. . . . . 6
class 𝑎 |
12 | 10, 7, 11 | wrex 2445 |
. . . . 5
wff
∃𝑦 ∈
𝑎 𝑥 = suc 𝑦 |
13 | 6, 12 | wo 698 |
. . . 4
wff (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦) |
14 | 3, 13 | wb 104 |
. . 3
wff (𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) |
15 | 14, 1 | wal 1341 |
. 2
wff
∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) |
16 | 15, 2 | wex 1480 |
1
wff
∃𝑎∀𝑥(𝑥 ∈ 𝑎 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝑎 𝑥 = suc 𝑦)) |