ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi GIF version

Theorem isfi 6648
Description: Express "𝐴 is finite." Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 6630 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2204 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 6631 . . . . 5 Rel ≈
43brrelex1i 4577 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 2543 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 3927 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 2436 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 2831 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 183 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1331  wcel 1480  {cab 2123  wrex 2415  Vcvv 2681   class class class wbr 3924  ωcom 4499  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-en 6628  df-fin 6630
This theorem is referenced by:  snfig  6701  fict  6755  fidceq  6756  nnfi  6759  enfi  6760  ssfilem  6762  dif1enen  6767  php5fin  6769  fisbth  6770  fin0  6772  fin0or  6773  diffitest  6774  findcard  6775  findcard2  6776  findcard2s  6777  diffisn  6780  infnfi  6782  fientri3  6796  unsnfi  6800  unsnfidcex  6801  unsnfidcel  6802  fiintim  6810  fidcenumlemim  6833  finnum  7032  hashcl  10520  hashen  10523  fihashdom  10542  hashun  10544  zfz1iso  10577
  Copyright terms: Public domain W3C validator