![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isfi | GIF version |
Description: Express "𝐴 is finite." Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 6591 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
2 | 1 | eleq2i 2181 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
3 | relen 6592 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 4542 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
5 | 4 | rexlimivw 2519 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
6 | breq1 3898 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
7 | 6 | rexbidv 2412 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
8 | 5, 7 | elab3 2805 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
9 | 2, 8 | bitri 183 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1314 ∈ wcel 1463 {cab 2101 ∃wrex 2391 Vcvv 2657 class class class wbr 3895 ωcom 4464 ≈ cen 6586 Fincfn 6588 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-xp 4505 df-rel 4506 df-en 6589 df-fin 6591 |
This theorem is referenced by: snfig 6662 fict 6715 fidceq 6716 nnfi 6719 enfi 6720 ssfilem 6722 dif1enen 6727 php5fin 6729 fisbth 6730 fin0 6732 fin0or 6733 diffitest 6734 findcard 6735 findcard2 6736 findcard2s 6737 diffisn 6740 infnfi 6742 fientri3 6756 unsnfi 6760 unsnfidcex 6761 unsnfidcel 6762 fiintim 6770 fidcenumlemim 6792 finnum 6989 hashcl 10420 hashen 10423 fihashdom 10442 hashun 10444 zfz1iso 10477 |
Copyright terms: Public domain | W3C validator |