| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | GIF version | ||
| Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6888 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
| 3 | relen 6889 | . . . . 5 ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i 4761 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 5 | 4 | rexlimivw 2644 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 6 | breq1 4085 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
| 7 | 6 | rexbidv 2531 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
| 8 | 5, 7 | elab3 2955 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 9 | 2, 8 | bitri 184 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 Vcvv 2799 class class class wbr 4082 ωcom 4681 ≈ cen 6883 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-en 6886 df-fin 6888 |
| This theorem is referenced by: snfig 6965 fict 7026 fidceq 7027 nnfi 7030 enfi 7031 ssfilem 7033 dif1enen 7038 php5fin 7040 fisbth 7041 fin0 7043 fin0or 7044 diffitest 7045 findcard 7046 findcard2 7047 findcard2s 7048 diffisn 7051 infnfi 7053 fientri3 7073 unsnfi 7077 unsnfidcex 7078 unsnfidcel 7079 fiintim 7089 fidcenumlemim 7115 finnum 7351 ficardon 7357 hashcl 10998 hashen 11001 fihashdom 11020 hashun 11022 zfz1iso 11058 |
| Copyright terms: Public domain | W3C validator |