![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isfi | GIF version |
Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 6799 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
3 | relen 6800 | . . . . 5 ⊢ Rel ≈ | |
4 | 3 | brrelex1i 4703 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
5 | 4 | rexlimivw 2607 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
6 | breq1 4033 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
7 | 6 | rexbidv 2495 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
8 | 5, 7 | elab3 2913 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
9 | 2, 8 | bitri 184 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∃wrex 2473 Vcvv 2760 class class class wbr 4030 ωcom 4623 ≈ cen 6794 Fincfn 6796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-en 6797 df-fin 6799 |
This theorem is referenced by: snfig 6870 fict 6926 fidceq 6927 nnfi 6930 enfi 6931 ssfilem 6933 dif1enen 6938 php5fin 6940 fisbth 6941 fin0 6943 fin0or 6944 diffitest 6945 findcard 6946 findcard2 6947 findcard2s 6948 diffisn 6951 infnfi 6953 fientri3 6973 unsnfi 6977 unsnfidcex 6978 unsnfidcel 6979 fiintim 6987 fidcenumlemim 7013 finnum 7245 hashcl 10855 hashen 10858 fihashdom 10877 hashun 10879 zfz1iso 10915 |
Copyright terms: Public domain | W3C validator |