ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi GIF version

Theorem isfi 6609
Description: Express "𝐴 is finite." Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem isfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-fin 6591 . . 3 Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥}
21eleq2i 2181 . 2 (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥})
3 relen 6592 . . . . 5 Rel ≈
43brrelex1i 4542 . . . 4 (𝐴𝑥𝐴 ∈ V)
54rexlimivw 2519 . . 3 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ V)
6 breq1 3898 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
76rexbidv 2412 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦𝑥 ↔ ∃𝑥 ∈ ω 𝐴𝑥))
85, 7elab3 2805 . 2 (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦𝑥} ↔ ∃𝑥 ∈ ω 𝐴𝑥)
92, 8bitri 183 1 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1314  wcel 1463  {cab 2101  wrex 2391  Vcvv 2657   class class class wbr 3895  ωcom 4464  cen 6586  Fincfn 6588
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-xp 4505  df-rel 4506  df-en 6589  df-fin 6591
This theorem is referenced by:  snfig  6662  fict  6715  fidceq  6716  nnfi  6719  enfi  6720  ssfilem  6722  dif1enen  6727  php5fin  6729  fisbth  6730  fin0  6732  fin0or  6733  diffitest  6734  findcard  6735  findcard2  6736  findcard2s  6737  diffisn  6740  infnfi  6742  fientri3  6756  unsnfi  6760  unsnfidcex  6761  unsnfidcel  6762  fiintim  6770  fidcenumlemim  6792  finnum  6989  hashcl  10420  hashen  10423  fihashdom  10442  hashun  10444  zfz1iso  10477
  Copyright terms: Public domain W3C validator