| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | GIF version | ||
| Description: Express "𝐴 is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose "Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
| Ref | Expression |
|---|---|
| isfi | ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6811 | . . 3 ⊢ Fin = {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥}) |
| 3 | relen 6812 | . . . . 5 ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i 4707 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 5 | 4 | rexlimivw 2610 | . . 3 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
| 6 | breq1 4037 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝐴 ≈ 𝑥)) | |
| 7 | 6 | rexbidv 2498 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 ≈ 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥)) |
| 8 | 5, 7 | elab3 2916 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥} ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 9 | 2, 8 | bitri 184 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 class class class wbr 4034 ωcom 4627 ≈ cen 6806 Fincfn 6808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-en 6809 df-fin 6811 |
| This theorem is referenced by: snfig 6882 fict 6938 fidceq 6939 nnfi 6942 enfi 6943 ssfilem 6945 dif1enen 6950 php5fin 6952 fisbth 6953 fin0 6955 fin0or 6956 diffitest 6957 findcard 6958 findcard2 6959 findcard2s 6960 diffisn 6963 infnfi 6965 fientri3 6985 unsnfi 6989 unsnfidcex 6990 unsnfidcel 6991 fiintim 7001 fidcenumlemim 7027 finnum 7261 ficardon 7267 hashcl 10890 hashen 10893 fihashdom 10912 hashun 10914 zfz1iso 10950 |
| Copyright terms: Public domain | W3C validator |