![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-fz | GIF version |
Description: Define an operation that produces a finite set of sequential integers. Read "𝑀...𝑁 " as "the set of integers from 𝑀 to 𝑁 inclusive". See fzval 10012 for its value and additional comments. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
df-fz | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfz 10010 | . 2 class ... | |
2 | vm | . . 3 setvar 𝑚 | |
3 | vn | . . 3 setvar 𝑛 | |
4 | cz 9255 | . . 3 class ℤ | |
5 | 2 | cv 1352 | . . . . . 6 class 𝑚 |
6 | vk | . . . . . . 7 setvar 𝑘 | |
7 | 6 | cv 1352 | . . . . . 6 class 𝑘 |
8 | cle 7995 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 4005 | . . . . 5 wff 𝑚 ≤ 𝑘 |
10 | 3 | cv 1352 | . . . . . 6 class 𝑛 |
11 | 7, 10, 8 | wbr 4005 | . . . . 5 wff 𝑘 ≤ 𝑛 |
12 | 9, 11 | wa 104 | . . . 4 wff (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) |
13 | 12, 6, 4 | crab 2459 | . . 3 class {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} |
14 | 2, 3, 4, 4, 13 | cmpo 5879 | . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
15 | 1, 14 | wceq 1353 | 1 wff ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
Colors of variables: wff set class |
This definition is referenced by: fzval 10012 fzf 10014 elfz2 10017 |
Copyright terms: Public domain | W3C validator |