ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval GIF version

Theorem fzval 10131
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fzval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4046 . . . 4 (𝑚 = 𝑀 → (𝑚𝑘𝑀𝑘))
21anbi1d 465 . . 3 (𝑚 = 𝑀 → ((𝑚𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑛)))
32rabbidv 2760 . 2 (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)})
4 breq2 4047 . . . 4 (𝑛 = 𝑁 → (𝑘𝑛𝑘𝑁))
54anbi2d 464 . . 3 (𝑛 = 𝑁 → ((𝑀𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑁)))
65rabbidv 2760 . 2 (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
7 df-fz 10130 . 2 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
8 zex 9380 . . 3 ℤ ∈ V
98rabex 4187 . 2 {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} ∈ V
103, 6, 7, 9ovmpo 6080 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {crab 2487   class class class wbr 4043  (class class class)co 5943  cle 8107  cz 9371  ...cfz 10129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-neg 8245  df-z 9372  df-fz 10130
This theorem is referenced by:  fzval2  10132  elfz1  10134  fznlem  10162
  Copyright terms: Public domain W3C validator