| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzval | GIF version | ||
| Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| fzval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4037 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 ≤ 𝑘 ↔ 𝑀 ≤ 𝑘)) | |
| 2 | 1 | anbi1d 465 | . . 3 ⊢ (𝑚 = 𝑀 → ((𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛))) |
| 3 | 2 | rabbidv 2752 | . 2 ⊢ (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
| 4 | breq2 4038 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑘 ≤ 𝑛 ↔ 𝑘 ≤ 𝑁)) | |
| 5 | 4 | anbi2d 464 | . . 3 ⊢ (𝑛 = 𝑁 → ((𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛) ↔ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁))) |
| 6 | 5 | rabbidv 2752 | . 2 ⊢ (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| 7 | df-fz 10101 | . 2 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
| 8 | zex 9352 | . . 3 ⊢ ℤ ∈ V | |
| 9 | 8 | rabex 4178 | . 2 ⊢ {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)} ∈ V |
| 10 | 3, 6, 7, 9 | ovmpo 6062 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀 ≤ 𝑘 ∧ 𝑘 ≤ 𝑁)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4034 (class class class)co 5925 ≤ cle 8079 ℤcz 9343 ...cfz 10100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8217 df-z 9344 df-fz 10101 |
| This theorem is referenced by: fzval2 10103 elfz1 10105 fznlem 10133 |
| Copyright terms: Public domain | W3C validator |