Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval GIF version

Theorem fzval 9792
 Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where ℕk means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fzval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3932 . . . 4 (𝑚 = 𝑀 → (𝑚𝑘𝑀𝑘))
21anbi1d 460 . . 3 (𝑚 = 𝑀 → ((𝑚𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑛)))
32rabbidv 2675 . 2 (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)})
4 breq2 3933 . . . 4 (𝑛 = 𝑁 → (𝑘𝑛𝑘𝑁))
54anbi2d 459 . . 3 (𝑛 = 𝑁 → ((𝑀𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑁)))
65rabbidv 2675 . 2 (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
7 df-fz 9791 . 2 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
8 zex 9063 . . 3 ℤ ∈ V
98rabex 4072 . 2 {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} ∈ V
103, 6, 7, 9ovmpo 5906 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480  {crab 2420   class class class wbr 3929  (class class class)co 5774   ≤ cle 7801  ℤcz 9054  ...cfz 9790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-neg 7936  df-z 9055  df-fz 9791 This theorem is referenced by:  fzval2  9793  elfz1  9795  fznlem  9821
 Copyright terms: Public domain W3C validator