ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval GIF version

Theorem fzval 10085
Description: The value of a finite set of sequential integers. E.g., 2...5 means the set {2, 3, 4, 5}. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our 1...𝑘; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fzval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4036 . . . 4 (𝑚 = 𝑀 → (𝑚𝑘𝑀𝑘))
21anbi1d 465 . . 3 (𝑚 = 𝑀 → ((𝑚𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑛)))
32rabbidv 2752 . 2 (𝑚 = 𝑀 → {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)})
4 breq2 4037 . . . 4 (𝑛 = 𝑁 → (𝑘𝑛𝑘𝑁))
54anbi2d 464 . . 3 (𝑛 = 𝑁 → ((𝑀𝑘𝑘𝑛) ↔ (𝑀𝑘𝑘𝑁)))
65rabbidv 2752 . 2 (𝑛 = 𝑁 → {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑛)} = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
7 df-fz 10084 . 2 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
8 zex 9335 . . 3 ℤ ∈ V
98rabex 4177 . 2 {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)} ∈ V
103, 6, 7, 9ovmpo 6058 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑘 ∈ ℤ ∣ (𝑀𝑘𝑘𝑁)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4033  (class class class)co 5922  cle 8062  cz 9326  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-neg 8200  df-z 9327  df-fz 10084
This theorem is referenced by:  fzval2  10086  elfz1  10088  fznlem  10116
  Copyright terms: Public domain W3C validator