ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2 GIF version

Theorem elfz2 10136
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 401 . 2 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
2 df-3an 982 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
32anbi1i 458 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
4 df-fz 10130 . . . 4 ... = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ {𝑧 ∈ ℤ ∣ (𝑥𝑧𝑧𝑦)})
54elmpocl 6140 . . 3 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpl 109 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 elfz1 10134 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
8 3anass 984 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
9 ibar 301 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
108, 9bitrid 192 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
117, 10bitrd 188 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))))
125, 6, 11pm5.21nii 705 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
131, 3, 123bitr4ri 213 1 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 980  wcel 2175  {crab 2487   class class class wbr 4043  (class class class)co 5943  cle 8107  cz 9371  ...cfz 10129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-neg 8245  df-z 9372  df-fz 10130
This theorem is referenced by:  elfzd  10137  elfz4  10139  elfzuzb  10140  uzsubsubfz  10168  fzmmmeqm  10179  fzpreddisj  10192  elfz1b  10211  fzp1nel  10225  elfz0ubfz0  10246  elfz0fzfz0  10247  fz0fzelfz0  10248  fz0fzdiffz0  10251  elfzmlbp  10253  fzind2  10366  iseqf1olemqcl  10642  iseqf1olemnab  10644  iseqf1olemab  10645  seq3f1olemqsumkj  10654  seq3f1olemqsumk  10655  summodclem2a  11634  fsum3  11640  fsum3cvg3  11649  fsumcl2lem  11651  fsumadd  11659  fsummulc2  11701  prodmodclem3  11828  prodmodclem2a  11829  fprodntrivap  11837  fprodeq0  11870  isprm5  12406  gausslemma2dlem3  15482  2lgslem1a1  15505
  Copyright terms: Public domain W3C validator