Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzf | GIF version |
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
fzf | ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ⊆ ℤ | |
2 | zex 9200 | . . . . 5 ⊢ ℤ ∈ V | |
3 | 2 | elpw2 4136 | . . . 4 ⊢ ({𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ⊆ ℤ) |
4 | 1, 3 | mpbir 145 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
5 | 4 | rgen2w 2522 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
6 | df-fz 9945 | . . 3 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
7 | 6 | fmpo 6169 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ ↔ ...:(ℤ × ℤ)⟶𝒫 ℤ) |
8 | 5, 7 | mpbi 144 | 1 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2136 ∀wral 2444 {crab 2448 ⊆ wss 3116 𝒫 cpw 3559 class class class wbr 3982 × cxp 4602 ⟶wf 5184 ≤ cle 7934 ℤcz 9191 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-neg 8072 df-z 9192 df-fz 9945 |
This theorem is referenced by: fzen 9978 fzof 10079 fzoval 10083 |
Copyright terms: Public domain | W3C validator |