Home | Intuitionistic Logic Explorer Theorem List (p. 101 of 141) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fzmmmeqm 10001 | Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.) |
⊢ (𝑀 ∈ (𝐿...𝑁) → ((𝑁 − 𝐿) − (𝑀 − 𝐿)) = (𝑁 − 𝑀)) | ||
Theorem | fzaddel 10002 | Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | ||
Theorem | fzsubel 10003 | Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝑀 − 𝐾)...(𝑁 − 𝐾)))) | ||
Theorem | fzopth 10004 | A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
Theorem | fzass4 10005 | Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) | ||
Theorem | fzss1 10006 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) | ||
Theorem | fzss2 10007 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) | ||
Theorem | fzssuz 10008 | A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | ||
Theorem | fzsn 10009 | A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | ||
Theorem | fzssp1 10010 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | ||
Theorem | fzssnn 10011 | Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | ||
Theorem | fzsuc 10012 | Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
Theorem | fzpred 10013 | Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | ||
Theorem | fzpreddisj 10014 | A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) | ||
Theorem | elfzp1 10015 | Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) | ||
Theorem | fzp1ss 10016 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | ||
Theorem | fzelp1 10017 | Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1))) | ||
Theorem | fzp1elp1 10018 | Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1))) | ||
Theorem | fznatpl1 10019 | Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | ||
Theorem | fzpr 10020 | A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | ||
Theorem | fztp 10021 | A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) | ||
Theorem | fzsuc2 10022 | Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
Theorem | fzp1disj 10023 | (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | ||
Theorem | fzdifsuc 10024 | Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) | ||
Theorem | fzprval 10025* | Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | ||
Theorem | fztpval 10026* | Two ways of defining the first three values of a sequence on ℕ. (Contributed by NM, 13-Sep-2011.) |
⊢ (∀𝑥 ∈ (1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) | ||
Theorem | fzrev 10027 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − 𝐾) ∈ (𝑀...𝑁))) | ||
Theorem | fzrev2 10028 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) | ||
Theorem | fzrev2i 10029 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀))) | ||
Theorem | fzrev3 10030 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | ||
Theorem | fzrev3i 10031 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) | ||
Theorem | fznn 10032 | Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfz1b 10033 | Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) |
⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) | ||
Theorem | elfzm11 10034 | Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
Theorem | uzsplit 10035 | Express an upper integer set as the disjoint (see uzdisj 10036) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) | ||
Theorem | uzdisj 10036 | The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ | ||
Theorem | fseq1p1m1 10037 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) | ||
Theorem | fseq1m1p1 10038 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ 𝐻 = {〈𝑁, 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) | ||
Theorem | fz1sbc 10039* | Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) | ||
Theorem | elfzp1b 10040 | An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁))) | ||
Theorem | elfzm1b 10041 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1)))) | ||
Theorem | elfzp12 10042 | Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) | ||
Theorem | fzm1 10043 | Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) | ||
Theorem | fzneuz 10044 | No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | ||
Theorem | fznuz 10045 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) | ||
Theorem | uznfz 10046 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) | ||
Theorem | fzp1nel 10047 | One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) | ||
Theorem | fzrevral 10048* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzrevral2 10049* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzrevral3 10050* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzshftral 10051* | Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
Theorem | ige2m1fz1 10052 | Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ (1...𝑁)) | ||
Theorem | ige2m1fz 10053 | Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁)) | ||
Theorem | fz01or 10054 | An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) | ||
Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0". | ||
Theorem | elfz2nn0 10055 | Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | ||
Theorem | fznn0 10056 | Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfznn0 10057 | A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | ||
Theorem | elfz3nn0 10058 | The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | ||
Theorem | fz0ssnn0 10059 | Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
⊢ (0...𝑁) ⊆ ℕ0 | ||
Theorem | fz1ssfz0 10060 | Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (1...𝑁) ⊆ (0...𝑁) | ||
Theorem | 0elfz 10061 | 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | ||
Theorem | nn0fz0 10062 | A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | ||
Theorem | elfz0add 10063 | An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) | ||
Theorem | fz0sn 10064 | An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.) |
⊢ (0...0) = {0} | ||
Theorem | fz0tp 10065 | An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
⊢ (0...2) = {0, 1, 2} | ||
Theorem | fz0to3un2pr 10066 | An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
⊢ (0...3) = ({0, 1} ∪ {2, 3}) | ||
Theorem | fz0to4untppr 10067 | An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | ||
Theorem | elfz0ubfz0 10068 | An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿)) | ||
Theorem | elfz0fzfz0 10069 | A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁)) | ||
Theorem | fz0fzelfz0 10070 | If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
⊢ ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅)) | ||
Theorem | fznn0sub2 10071 | Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) | ||
Theorem | uzsubfz0 10072 | Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
⊢ ((𝐿 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − 𝐿) ∈ (0...𝑁)) | ||
Theorem | fz0fzdiffz0 10073 | The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.) |
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
Theorem | elfzmlbm 10074 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) | ||
Theorem | elfzmlbp 10075 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
Theorem | fzctr 10076 | Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | ||
Theorem | difelfzle 10077 | The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≤ 𝑀) → (𝑀 − 𝐾) ∈ (0...𝑁)) | ||
Theorem | difelfznle 10078 | The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) | ||
Theorem | nn0split 10079 | Express the set of nonnegative integers as the disjoint (see nn0disj 10081) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
Theorem | nnsplit 10080 | Express the set of positive integers as the disjoint union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝑁 ∈ ℕ → ℕ = ((1...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
Theorem | nn0disj 10081 | The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
Theorem | 1fv 10082 | A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) | ||
Theorem | 4fvwrd4 10083* | The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
⊢ ((𝐿 ∈ (ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) | ||
Theorem | 2ffzeq 10084* | Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐹:(0...𝑀)⟶𝑋 ∧ 𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
Syntax | cfzo 10085 | Syntax for half-open integer ranges. |
class ..^ | ||
Definition | df-fzo 10086* | Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 9953, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 10120 with fzsplit 9994, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | ||
Theorem | fzof 10087 | Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | ||
Theorem | elfzoel1 10088 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | ||
Theorem | elfzoel2 10089 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | ||
Theorem | elfzoelz 10090 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | ||
Theorem | fzoval 10091 | Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | ||
Theorem | elfzo 10092 | Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
Theorem | elfzo2 10093 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | ||
Theorem | elfzouz 10094 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
Theorem | fzodcel 10095 | Decidability of membership in a half-open integer interval. (Contributed by Jim Kingdon, 25-Aug-2022.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀..^𝑁)) | ||
Theorem | fzolb 10096 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | ||
Theorem | fzolb2 10097 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁)) | ||
Theorem | elfzole1 10098 | A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝐾) | ||
Theorem | elfzolt2 10099 | A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) | ||
Theorem | elfzolt3 10100 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 < 𝑁) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |