| Intuitionistic Logic Explorer Theorem List (p. 101 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | iooidg 10001 | An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) | ||
| Theorem | elioo3g 10002 | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elioo1 10003 | Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elioore 10004 | A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) | ||
| Theorem | lbioog 10005 | An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵)) | ||
| Theorem | ubioog 10006 | An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵)) | ||
| Theorem | iooval2 10007* | Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | ||
| Theorem | iooss1 10008 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) | ||
| Theorem | iooss2 10009 | Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) | ||
| Theorem | iocval 10010* | Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
| Theorem | icoval 10011* | Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) | ||
| Theorem | iccval 10012* | Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | ||
| Theorem | elioo2 10013 | Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elioc1 10014 | Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | elico1 10015 | Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elicc1 10016 | Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | iccid 10017 | A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) | ||
| Theorem | icc0r 10018 | An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅)) | ||
| Theorem | eliooxr 10019 | An inhabited open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | ||
| Theorem | eliooord 10020 | Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | ||
| Theorem | ubioc1 10021 | The upper bound belongs to an open-below, closed-above interval. See ubicc2 10077. (Contributed by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) | ||
| Theorem | lbico1 10022 | The lower bound belongs to a closed-below, open-above interval. See lbicc2 10076. (Contributed by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) | ||
| Theorem | iccleub 10023 | An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) | ||
| Theorem | iccgelb 10024 | An element of a closed interval is more than or equal to its lower bound (Contributed by Thierry Arnoux, 23-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) | ||
| Theorem | elioo5 10025 | Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elioo4g 10026 | Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | ioossre 10027 | An open interval is a set of reals. (Contributed by NM, 31-May-2007.) |
| ⊢ (𝐴(,)𝐵) ⊆ ℝ | ||
| Theorem | elioc2 10028 | Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | elico2 10029 | Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | ||
| Theorem | elicc2 10030 | Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | elicc2i 10031 | Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) | ||
| Theorem | elicc4 10032 | Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | ||
| Theorem | iccss 10033 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | iccssioo 10034 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | icossico 10035 | Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | iccss2 10036 | Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) | ||
| Theorem | iccssico 10037 | Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | iccssioo2 10038 | Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | iccssico2 10039 | Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
| ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) | ||
| Theorem | ioomax 10040 | The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| ⊢ (-∞(,)+∞) = ℝ | ||
| Theorem | iccmax 10041 | The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (-∞[,]+∞) = ℝ* | ||
| Theorem | ioopos 10042 | The set of positive reals expressed as an open interval. (Contributed by NM, 7-May-2007.) |
| ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
| Theorem | ioorp 10043 | The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ (0(,)+∞) = ℝ+ | ||
| Theorem | iooshf 10044 | Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)))) | ||
| Theorem | iocssre 10045 | A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) | ||
| Theorem | icossre 10046 | A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | ||
| Theorem | iccssre 10047 | A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | ||
| Theorem | iccssxr 10048 | A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴[,]𝐵) ⊆ ℝ* | ||
| Theorem | iocssxr 10049 | An open-below, closed-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴(,]𝐵) ⊆ ℝ* | ||
| Theorem | icossxr 10050 | A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
| ⊢ (𝐴[,)𝐵) ⊆ ℝ* | ||
| Theorem | ioossicc 10051 | An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) |
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | icossicc 10052 | A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.) |
| ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | iocssicc 10053 | A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | ||
| Theorem | ioossico 10054 | An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) | ||
| Theorem | iocssioo 10055 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | icossioo 10056 | Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | ioossioo 10057 | Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) | ||
| Theorem | iccsupr 10058* | A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | ||
| Theorem | elioopnf 10059 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) | ||
| Theorem | elioomnf 10060 | Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) | ||
| Theorem | elicopnf 10061 | Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) | ||
| Theorem | repos 10062 | Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.) |
| ⊢ (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
| Theorem | ioof 10063 | The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | ||
| Theorem | iccf 10064 | The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ [,]:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
| Theorem | unirnioo 10065 | The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.) |
| ⊢ ℝ = ∪ ran (,) | ||
| Theorem | dfioo2 10066* | Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑤 ∈ ℝ ∣ (𝑥 < 𝑤 ∧ 𝑤 < 𝑦)}) | ||
| Theorem | ioorebasg 10067 | Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) | ||
| Theorem | elrege0 10068 | The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) |
| ⊢ (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
| Theorem | rge0ssre 10069 | Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.) |
| ⊢ (0[,)+∞) ⊆ ℝ | ||
| Theorem | elxrge0 10070 | Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) | ||
| Theorem | 0e0icopnf 10071 | 0 is a member of (0[,)+∞) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ∈ (0[,)+∞) | ||
| Theorem | 0e0iccpnf 10072 | 0 is a member of (0[,]+∞) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ∈ (0[,]+∞) | ||
| Theorem | ge0addcl 10073 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 + 𝐵) ∈ (0[,)+∞)) | ||
| Theorem | ge0mulcl 10074 | The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ (0[,)+∞) ∧ 𝐵 ∈ (0[,)+∞)) → (𝐴 · 𝐵) ∈ (0[,)+∞)) | ||
| Theorem | ge0xaddcl 10075 | The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
| Theorem | lbicc2 10076 | The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | ||
| Theorem | ubicc2 10077 | The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) | ||
| Theorem | 0elunit 10078 | Zero is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ 0 ∈ (0[,]1) | ||
| Theorem | 1elunit 10079 | One is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ 1 ∈ (0[,]1) | ||
| Theorem | iooneg 10080 | Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) | ||
| Theorem | iccneg 10081 | Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) | ||
| Theorem | icoshft 10082 | A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))) | ||
| Theorem | icoshftf1o 10083* | Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) | ||
| Theorem | icodisj 10084 | End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) | ||
| Theorem | ioodisj 10085 | If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) | ||
| Theorem | iccshftr 10086 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 + 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftri 10087 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 + 𝑅) = 𝐶 & ⊢ (𝐵 + 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 + 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccshftl 10088 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 − 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccshftli 10089 | Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ & ⊢ (𝐴 − 𝑅) = 𝐶 & ⊢ (𝐵 − 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 − 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | iccdil 10090 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | iccdili 10091 | Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 · 𝑅) = 𝐶 & ⊢ (𝐵 · 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | icccntr 10092 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 / 𝑅) ∈ (𝐶[,]𝐷))) | ||
| Theorem | icccntri 10093 | Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝑅 ∈ ℝ+ & ⊢ (𝐴 / 𝑅) = 𝐶 & ⊢ (𝐵 / 𝑅) = 𝐷 ⇒ ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 / 𝑅) ∈ (𝐶[,]𝐷)) | ||
| Theorem | divelunit 10094 | A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) ∈ (0[,]1) ↔ 𝐴 ≤ 𝐵)) | ||
| Theorem | lincmb01cmp 10095 | A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵)) | ||
| Theorem | iccf1o 10096* | Describe a bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵]. (Contributed by Mario Carneiro, 8-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ ◡𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦 − 𝐴) / (𝐵 − 𝐴))))) | ||
| Theorem | unitssre 10097 | (0[,]1) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (0[,]1) ⊆ ℝ | ||
| Theorem | iccen 10098 | Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ≈ (𝐴[,]𝐵)) | ||
| Theorem | zltaddlt1le 10099 | The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) | ||
| Syntax | cfz 10100 |
Extend class notation to include the notation for a contiguous finite set
of integers. Read "𝑀...𝑁 " as "the set of integers
from 𝑀 to
𝑁 inclusive".
This symbol is also used informally in some comments to denote an ellipsis, e.g., 𝐴 + 𝐴↑2 + ... + 𝐴↑(𝑁 − 1). |
| class ... | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |