HomeHome Intuitionistic Logic Explorer
Theorem List (p. 101 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10001-10100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxleneg 10001 Extended real version of leneg 8580. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
 
Theoremxlt0neg1 10002 Extended real version of lt0neg1 8583. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴))
 
Theoremxlt0neg2 10003 Extended real version of lt0neg2 8584. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0))
 
Theoremxle0neg1 10004 Extended real version of le0neg1 8585. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴))
 
Theoremxle0neg2 10005 Extended real version of le0neg2 8586. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0))
 
Theoremxrpnfdc 10006 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = +∞)
 
Theoremxrmnfdc 10007 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ*DECID 𝐴 = -∞)
 
Theoremxaddf 10008 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
+𝑒 :(ℝ* × ℝ*)⟶ℝ*
 
Theoremxaddval 10009 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
 
Theoremxaddpnf1 10010 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
 
Theoremxaddpnf2 10011 Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
 
Theoremxaddmnf1 10012 Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
 
Theoremxaddmnf2 10013 Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
 
Theorempnfaddmnf 10014 Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(+∞ +𝑒 -∞) = 0
 
Theoremmnfaddpnf 10015 Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(-∞ +𝑒 +∞) = 0
 
Theoremrexadd 10016 The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
 
Theoremrexsub 10017 Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴𝐵))
 
Theoremrexaddd 10018 The extended real addition operation when both arguments are real. Deduction version of rexadd 10016. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
 
Theoremxnegcld 10019 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → -𝑒𝐴 ∈ ℝ*)
 
Theoremxrex 10020 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
* ∈ V
 
Theoremxaddnemnf 10021 Closure of extended real addition in the subset * / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
 
Theoremxaddnepnf 10022 Closure of extended real addition in the subset * / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
 
Theoremxnegid 10023 Extended real version of negid 8361. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0)
 
Theoremxaddcl 10024 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
 
Theoremxaddcom 10025 The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
 
Theoremxaddid1 10026 Extended real version of addrid 8252. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
 
Theoremxaddid2 10027 Extended real version of addlid 8253. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴)
 
Theoremxaddid1d 10028 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → (𝐴 +𝑒 0) = 𝐴)
 
Theoremxnn0lenn0nn0 10029 An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
 
Theoremxnn0le2is012 10030 An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.)
((𝑁 ∈ ℕ0*𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
 
Theoremxnn0xadd0 10031 The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
 
Theoremxnegdi 10032 Extended real version of negdi 8371. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵))
 
Theoremxaddass 10033 Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 10034, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
 
Theoremxaddass2 10034 Associativity of extended real addition. See xaddass 10033 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
 
Theoremxpncan 10035 Extended real version of pncan 8320. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
 
Theoremxnpcan 10036 Extended real version of npcan 8323. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
 
Theoremxleadd1a 10037 Extended real version of leadd1 8545; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))
 
Theoremxleadd2a 10038 Commuted form of xleadd1a 10037. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵))
 
Theoremxleadd1 10039 Weakened version of xleadd1a 10037 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)))
 
Theoremxltadd1 10040 Extended real version of ltadd1 8544. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
 
Theoremxltadd2 10041 Extended real version of ltadd2 8534. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵)))
 
Theoremxaddge0 10042 The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵))
 
Theoremxle2add 10043 Extended real version of le2add 8559. (Contributed by Mario Carneiro, 23-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝐶𝐵𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)))
 
Theoremxlt2add 10044 Extended real version of lt2add 8560. Note that ltleadd 8561, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
 
Theoremxsubge0 10045 Extended real version of subge0 8590. (Contributed by Mario Carneiro, 24-Aug-2015.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
 
Theoremxposdif 10046 Extended real version of posdif 8570. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
 
Theoremxlesubadd 10047 Under certain conditions, the conclusion of lesubadd 8549 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
 
Theoremxaddcld 10048 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
 
Theoremxadd4d 10049 Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8283. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
(𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))    &   (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))    &   (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))    &   (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))       (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
 
Theoremxnn0add4d 10050 Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 10049. (Contributed by AV, 12-Dec-2020.)
(𝜑𝐴 ∈ ℕ0*)    &   (𝜑𝐵 ∈ ℕ0*)    &   (𝜑𝐶 ∈ ℕ0*)    &   (𝜑𝐷 ∈ ℕ0*)       (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
 
Theoremxleaddadd 10051 Cancelling a factor of two in (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
 
4.5.3  Real number intervals
 
Syntaxcioo 10052 Extend class notation with the set of open intervals of extended reals.
class (,)
 
Syntaxcioc 10053 Extend class notation with the set of open-below, closed-above intervals of extended reals.
class (,]
 
Syntaxcico 10054 Extend class notation with the set of closed-below, open-above intervals of extended reals.
class [,)
 
Syntaxcicc 10055 Extend class notation with the set of closed intervals of extended reals.
class [,]
 
Definitiondf-ioo 10056* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
 
Definitiondf-ioc 10057* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
 
Definitiondf-ico 10058* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
 
Definitiondf-icc 10059* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
 
Theoremixxval 10060* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
 
Theoremelixx1 10061* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxf 10062* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
 
Theoremixxex 10063* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       𝑂 ∈ V
 
Theoremixxssxr 10064* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐴𝑂𝐵) ⊆ ℝ*
 
Theoremelixx3g 10065* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})       (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
 
Theoremixxssixx 10066* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))       (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
 
Theoremixxdisj 10067* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
 
Theoremixxss1 10068* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑆𝑦)})    &   ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵𝐵𝑇𝑤) → 𝐴𝑅𝑤))       ((𝐴 ∈ ℝ*𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss2 10069* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑇𝑦)})    &   ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵𝐵𝑊𝐶) → 𝑤𝑆𝐶))       ((𝐶 ∈ ℝ*𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶))
 
Theoremixxss12 10070* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})    &   𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})    &   ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶𝐶𝑇𝑤) → 𝐴𝑅𝑤))    &   ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷𝐷𝑋𝐵) → 𝑤𝑆𝐵))       (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵))
 
Theoremiooex 10071 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
(,) ∈ V
 
Theoremiooval 10072* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremiooidg 10073 An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
(𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅)
 
Theoremelioo3g 10074 Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioo1 10075 Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioore 10076 A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
(𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ)
 
Theoremlbioog 10077 An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
 
Theoremubioog 10078 An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
 
Theoremiooval2 10079* Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥𝑥 < 𝐵)})
 
Theoremiooss1 10080 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
 
Theoremiooss2 10081 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
 
Theoremiocval 10082* Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥𝐵)})
 
Theoremicoval 10083* Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥 < 𝐵)})
 
Theoremiccval 10084* Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
 
Theoremelioo2 10085 Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioc1 10086 Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
 
Theoremelico1 10087 Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
 
Theoremelicc1 10088 Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
 
Theoremiccid 10089 A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
(𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
 
Theoremicc0r 10090 An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))
 
Theoremeliooxr 10091 An inhabited open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
 
Theoremeliooord 10092 Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
 
Theoremubioc1 10093 The upper bound belongs to an open-below, closed-above interval. See ubicc2 10149. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵))
 
Theoremlbico1 10094 The lower bound belongs to a closed-below, open-above interval. See lbicc2 10148. (Contributed by FL, 29-May-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵))
 
Theoremiccleub 10095 An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
 
Theoremiccgelb 10096 An element of a closed interval is more than or equal to its lower bound (Contributed by Thierry Arnoux, 23-Dec-2016.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
 
Theoremelioo5 10097 Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremelioo4g 10098 Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐶 < 𝐵)))
 
Theoremioossre 10099 An open interval is a set of reals. (Contributed by NM, 31-May-2007.)
(𝐴(,)𝐵) ⊆ ℝ
 
Theoremelioc2 10100 Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >