HomeHome Intuitionistic Logic Explorer
Theorem List (p. 101 of 145)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10001-10100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelfz 10001 Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
 
Theoremelfz2 10002 Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show 𝑀 ∈ ℤ and 𝑁 ∈ ℤ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
 
Theoremelfz5 10003 Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
 
Theoremelfz4 10004 Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremelfzuzb 10005 Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
 
Theoremeluzfz 10006 Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremelfzuz 10007 A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
 
Theoremelfzuz3 10008 Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
 
Theoremelfzel2 10009 Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
 
Theoremelfzel1 10010 Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
 
Theoremelfzelz 10011 A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ)
 
Theoremelfzelzd 10012 A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐾 ∈ (𝑀...𝑁))       (𝜑𝐾 ∈ ℤ)
 
Theoremelfzle1 10013 A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
 
Theoremelfzle2 10014 A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾𝑁)
 
Theoremelfzuz2 10015 Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
 
Theoremelfzle3 10016 Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝑀𝑁)
 
Theoremeluzfz1 10017 Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
 
Theoremeluzfz2 10018 Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
 
Theoremeluzfz2b 10019 Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
(𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (𝑀...𝑁))
 
Theoremelfz3 10020 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.)
(𝑁 ∈ ℤ → 𝑁 ∈ (𝑁...𝑁))
 
Theoremelfz1eq 10021 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
(𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
 
Theoremelfzubelfz 10022 If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.)
(𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁))
 
Theorempeano2fzr 10023 A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremfzm 10024* Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.)
(∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ𝑀))
 
Theoremfztri3or 10025 Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
 
Theoremfzdcel 10026 Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))
 
Theoremfznlem 10027 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
 
Theoremfzn 10028 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
 
Theoremfzen 10029 A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
 
Theoremfz1n 10030 A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0))
 
Theorem0fz1 10031 Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0))
 
Theoremfz10 10032 There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(1...0) = ∅
 
Theoremuzsubsubfz 10033 Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
 
Theoremuzsubsubfz1 10034 Membership of an integer greater than L decreased by ( L - 1 ) in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁))
 
Theoremige3m2fz 10035 Membership of an integer greater than 2 decreased by 2 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
 
Theoremfzsplit2 10036 Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
(((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzsplit 10037 Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.)
(𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzdisj 10038 Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
 
Theoremfz01en 10039 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.)
(𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
 
Theoremelfznn 10040 A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.)
(𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
 
Theoremelfz1end 10041 A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
 
Theoremfz1ssnn 10042 A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
(1...𝐴) ⊆ ℕ
 
Theoremfznn0sub 10043 Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)
 
Theoremfzmmmeqm 10044 Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.)
(𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
 
Theoremfzaddel 10045 Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
 
Theoremfzsubel 10046 Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
 
Theoremfzopth 10047 A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
 
Theoremfzass4 10048 Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
 
Theoremfzss1 10049 Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzss2 10050 Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
 
Theoremfzssuz 10051 A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.)
(𝑀...𝑁) ⊆ (ℤ𝑀)
 
Theoremfzsn 10052 A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
 
Theoremfzssp1 10053 Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
 
Theoremfzssnn 10054 Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.)
(𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
 
Theoremfzsuc 10055 Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzpred 10056 Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
 
Theoremfzpreddisj 10057 A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
 
Theoremelfzp1 10058 Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
 
Theoremfzp1ss 10059 Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzelp1 10060 Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1)))
 
Theoremfzp1elp1 10061 Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1)))
 
Theoremfznatpl1 10062 Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
 
Theoremfzpr 10063 A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
 
Theoremfztp 10064 A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
 
Theoremfzsuc2 10065 Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzp1disj 10066 (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
 
Theoremfzdifsuc 10067 Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
 
Theoremfzprval 10068* Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
(∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
 
Theoremfztpval 10069* Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
(∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
 
Theoremfzrev 10070 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev2 10071 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
 
Theoremfzrev2i 10072 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)))
 
Theoremfzrev3 10073 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev3i 10074 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))
 
Theoremfznn 10075 Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
 
Theoremelfz1b 10076 Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
(𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
 
Theoremelfzm11 10077 Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
 
Theoremuzsplit 10078 Express an upper integer set as the disjoint (see uzdisj 10079) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
(𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
 
Theoremuzdisj 10079 The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
 
Theoremfseq1p1m1 10080 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
𝐻 = {⟨(𝑁 + 1), 𝐵⟩}       (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
 
Theoremfseq1m1p1 10081 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
𝐻 = {⟨𝑁, 𝐵⟩}       (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
 
Theoremfz1sbc 10082* Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
(𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
 
Theoremelfzp1b 10083 An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
 
Theoremelfzm1b 10084 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1))))
 
Theoremelfzp12 10085 Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
 
Theoremfzm1 10086 Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
 
Theoremfzneuz 10087 No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
 
Theoremfznuz 10088 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ‘(𝑁 + 1)))
 
Theoremuznfz 10089 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
 
Theoremfzp1nel 10090 One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
¬ (𝑁 + 1) ∈ (𝑀...𝑁)
 
Theoremfzrevral 10091* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral2 10092* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral3 10093* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑))
 
Theoremfzshftral 10094* Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
 
Theoremige2m1fz1 10095 Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ (1...𝑁))
 
Theoremige2m1fz 10096 Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁))
 
Theoremfz01or 10097 An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
(𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
 
4.5.5  Finite intervals of nonnegative integers

Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0".

 
Theoremelfz2nn0 10098 Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
 
Theoremfznn0 10099 Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
(𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁)))
 
Theoremelfznn0 10100 A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14485
  Copyright terms: Public domain < Previous  Next >