Theorem List for Intuitionistic Logic Explorer - 10001-10100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | xnpcan 10001 |
Extended real version of npcan 8288. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵) =
𝐴) |
| |
| Theorem | xleadd1a 10002 |
Extended real version of leadd1 8510; note that the converse implication is
not true, unlike the real version (for example 0 <
1 but
(1 +𝑒 +∞) ≤ (0
+𝑒 +∞)). (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) |
| |
| Theorem | xleadd2a 10003 |
Commuted form of xleadd1a 10002. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) |
| |
| Theorem | xleadd1 10004 |
Weakened version of xleadd1a 10002 under which the reverse implication is
true. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ ℝ)
→ (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
| |
| Theorem | xltadd1 10005 |
Extended real version of ltadd1 8509. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ ℝ)
→ (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) |
| |
| Theorem | xltadd2 10006 |
Extended real version of ltadd2 8499. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ ℝ)
→ (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵))) |
| |
| Theorem | xaddge0 10007 |
The sum of nonnegative extended reals is nonnegative. (Contributed by
Mario Carneiro, 21-Aug-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (0 ≤ 𝐴 ∧ 0
≤ 𝐵)) → 0 ≤
(𝐴 +𝑒
𝐵)) |
| |
| Theorem | xle2add 10008 |
Extended real version of le2add 8524. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐷 ∈ ℝ*)) →
((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) |
| |
| Theorem | xlt2add 10009 |
Extended real version of lt2add 8525. Note that ltleadd 8526, which has
weaker assumptions, is not true for the extended reals (since
0 + +∞ < 1 + +∞ fails).
(Contributed by Mario Carneiro,
23-Aug-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐶 ∈
ℝ* ∧ 𝐷 ∈ ℝ*)) →
((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) |
| |
| Theorem | xsubge0 10010 |
Extended real version of subge0 8555. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
| |
| Theorem | xposdif 10011 |
Extended real version of posdif 8535. (Contributed by Mario Carneiro,
24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| |
| Theorem | xlesubadd 10012 |
Under certain conditions, the conclusion of lesubadd 8514 is true even in the
extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒
-𝑒𝐵)
≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) |
| |
| Theorem | xaddcld 10013 |
The extended real addition operation is closed in extended reals.
(Contributed by Mario Carneiro, 28-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈
ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈
ℝ*) |
| |
| Theorem | xadd4d 10014 |
Rearrangement of 4 terms in a sum for extended addition, analogous to
add4d 8248. (Contributed by Alexander van der Vekens,
21-Dec-2017.)
|
| ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) & ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) & ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) & ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠
-∞)) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
| |
| Theorem | xnn0add4d 10015 |
Rearrangement of 4 terms in a sum for extended addition of extended
nonnegative integers, analogous to xadd4d 10014. (Contributed by AV,
12-Dec-2020.)
|
| ⊢ (𝜑 → 𝐴 ∈
ℕ0*)
& ⊢ (𝜑 → 𝐵 ∈
ℕ0*)
& ⊢ (𝜑 → 𝐶 ∈
ℕ0*)
& ⊢ (𝜑 → 𝐷 ∈
ℕ0*) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
| |
| Theorem | xleaddadd 10016 |
Cancelling a factor of two in ≤ (expressed as
addition rather than
as a factor to avoid extended real multiplication). (Contributed by Jim
Kingdon, 18-Apr-2023.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))) |
| |
| 4.5.3 Real number intervals
|
| |
| Syntax | cioo 10017 |
Extend class notation with the set of open intervals of extended reals.
|
| class (,) |
| |
| Syntax | cioc 10018 |
Extend class notation with the set of open-below, closed-above intervals
of extended reals.
|
| class (,] |
| |
| Syntax | cico 10019 |
Extend class notation with the set of closed-below, open-above intervals
of extended reals.
|
| class [,) |
| |
| Syntax | cicc 10020 |
Extend class notation with the set of closed intervals of extended
reals.
|
| class [,] |
| |
| Definition | df-ioo 10021* |
Define the set of open intervals of extended reals. (Contributed by NM,
24-Dec-2006.)
|
| ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| |
| Definition | df-ioc 10022* |
Define the set of open-below, closed-above intervals of extended reals.
(Contributed by NM, 24-Dec-2006.)
|
| ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| |
| Definition | df-ico 10023* |
Define the set of closed-below, open-above intervals of extended reals.
(Contributed by NM, 24-Dec-2006.)
|
| ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| |
| Definition | df-icc 10024* |
Define the set of closed intervals of extended reals. (Contributed by
NM, 24-Dec-2006.)
|
| ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| |
| Theorem | ixxval 10025* |
Value of the interval function. (Contributed by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| |
| Theorem | elixx1 10026* |
Membership in an interval of extended reals. (Contributed by Mario
Carneiro, 3-Nov-2013.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| |
| Theorem | ixxf 10027* |
The set of intervals of extended reals maps to subsets of extended
reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro,
16-Nov-2013.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂:(ℝ* ×
ℝ*)⟶𝒫 ℝ* |
| |
| Theorem | ixxex 10028* |
The set of intervals of extended reals exists. (Contributed by Mario
Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂 ∈ V |
| |
| Theorem | ixxssxr 10029* |
The set of intervals of extended reals maps to subsets of extended
reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐴𝑂𝐵) ⊆
ℝ* |
| |
| Theorem | elixx3g 10030* |
Membership in a set of open intervals of extended reals. We use the
fact that an operation's value is empty outside of its domain to show
𝐴
∈ ℝ* and 𝐵 ∈ ℝ*.
(Contributed by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
| |
| Theorem | ixxssixx 10031* |
An interval is a subset of its closure. (Contributed by Paul Chapman,
18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤))
& ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
| |
| Theorem | ixxdisj 10032* |
Split an interval into disjoint pieces. (Contributed by Mario
Carneiro, 16-Jun-2014.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅) |
| |
| Theorem | ixxss1 10033* |
Subset relationship for intervals of extended reals. (Contributed by
Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro,
28-Apr-2015.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) |
| |
| Theorem | ixxss2 10034* |
Subset relationship for intervals of extended reals. (Contributed by
Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro,
28-Apr-2015.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) & ⊢ ((𝑤 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) ⇒ ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) |
| |
| Theorem | ixxss12 10035* |
Subset relationship for intervals of extended reals. (Contributed by
Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro,
28-Apr-2015.)
|
| ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶 ∧ 𝐶𝑇𝑤) → 𝐴𝑅𝑤))
& ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝑤𝑈𝐷 ∧ 𝐷𝑋𝐵) → 𝑤𝑆𝐵)) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴𝑊𝐶 ∧ 𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵)) |
| |
| Theorem | iooex 10036 |
The set of open intervals of extended reals exists. (Contributed by NM,
6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (,) ∈ V |
| |
| Theorem | iooval 10037* |
Value of the open interval function. (Contributed by NM, 24-Dec-2006.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| |
| Theorem | iooidg 10038 |
An open interval with identical lower and upper bounds is empty.
(Contributed by Jim Kingdon, 29-Mar-2020.)
|
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
| |
| Theorem | elioo3g 10039 |
Membership in a set of open intervals of extended reals. We use the
fact that an operation's value is empty outside of its domain to show
𝐴
∈ ℝ* and 𝐵 ∈ ℝ*.
(Contributed by NM, 24-Dec-2006.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elioo1 10040 |
Membership in an open interval of extended reals. (Contributed by NM,
24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elioore 10041 |
A member of an open interval of reals is a real. (Contributed by NM,
17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
| |
| Theorem | lbioog 10042 |
An open interval does not contain its left endpoint. (Contributed by
Jim Kingdon, 30-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ ¬ 𝐴 ∈
(𝐴(,)𝐵)) |
| |
| Theorem | ubioog 10043 |
An open interval does not contain its right endpoint. (Contributed by
Jim Kingdon, 30-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ ¬ 𝐵 ∈
(𝐴(,)𝐵)) |
| |
| Theorem | iooval2 10044* |
Value of the open interval function. (Contributed by NM, 6-Feb-2007.)
(Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) |
| |
| Theorem | iooss1 10045 |
Subset relationship for open intervals of extended reals. (Contributed
by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶)) |
| |
| Theorem | iooss2 10046 |
Subset relationship for open intervals of extended reals. (Contributed
by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶)) |
| |
| Theorem | iocval 10047* |
Value of the open-below, closed-above interval function. (Contributed
by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵)}) |
| |
| Theorem | icoval 10048* |
Value of the closed-below, open-above interval function. (Contributed
by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴[,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)}) |
| |
| Theorem | iccval 10049* |
Value of the closed interval function. (Contributed by NM,
24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) |
| |
| Theorem | elioo2 10050 |
Membership in an open interval of extended reals. (Contributed by NM,
6-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elioc1 10051 |
Membership in an open-below, closed-above interval of extended reals.
(Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| |
| Theorem | elico1 10052 |
Membership in a closed-below, open-above interval of extended reals.
(Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro,
3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elicc1 10053 |
Membership in a closed interval of extended reals. (Contributed by NM,
24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| |
| Theorem | iccid 10054 |
A closed interval with identical lower and upper bounds is a singleton.
(Contributed by Jeff Hankins, 13-Jul-2009.)
|
| ⊢ (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴}) |
| |
| Theorem | icc0r 10055 |
An empty closed interval of extended reals. (Contributed by Jim
Kingdon, 30-Mar-2020.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅)) |
| |
| Theorem | eliooxr 10056 |
An inhabited open interval spans an interval of extended reals.
(Contributed by NM, 17-Aug-2008.)
|
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈
ℝ*)) |
| |
| Theorem | eliooord 10057 |
Ordering implied by a member of an open interval of reals. (Contributed
by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
|
| ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| |
| Theorem | ubioc1 10058 |
The upper bound belongs to an open-below, closed-above interval. See
ubicc2 10114. (Contributed by FL, 29-May-2014.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) |
| |
| Theorem | lbico1 10059 |
The lower bound belongs to a closed-below, open-above interval. See
lbicc2 10113. (Contributed by FL, 29-May-2014.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) → 𝐴 ∈ (𝐴[,)𝐵)) |
| |
| Theorem | iccleub 10060 |
An element of a closed interval is less than or equal to its upper bound.
(Contributed by Jeff Hankins, 14-Jul-2009.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
| |
| Theorem | iccgelb 10061 |
An element of a closed interval is more than or equal to its lower bound
(Contributed by Thierry Arnoux, 23-Dec-2016.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐶) |
| |
| Theorem | elioo5 10062 |
Membership in an open interval of extended reals. (Contributed by NM,
17-Aug-2008.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elioo4g 10063 |
Membership in an open interval of extended reals. (Contributed by NM,
8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
|
| ⊢ (𝐶 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈ ℝ)
∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | ioossre 10064 |
An open interval is a set of reals. (Contributed by NM,
31-May-2007.)
|
| ⊢ (𝐴(,)𝐵) ⊆ ℝ |
| |
| Theorem | elioc2 10065 |
Membership in an open-below, closed-above real interval. (Contributed by
Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| |
| Theorem | elico2 10066 |
Membership in a closed-below, open-above real interval. (Contributed by
Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
| |
| Theorem | elicc2 10067 |
Membership in a closed real interval. (Contributed by Paul Chapman,
21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| |
| Theorem | elicc2i 10068 |
Inference for membership in a closed interval. (Contributed by Scott
Fenton, 3-Jun-2013.)
|
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| |
| Theorem | elicc4 10069 |
Membership in a closed real interval. (Contributed by Stefan O'Rear,
16-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| |
| Theorem | iccss 10070 |
Condition for a closed interval to be a subset of another closed
interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 20-Feb-2015.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
| |
| Theorem | iccssioo 10071 |
Condition for a closed interval to be a subset of an open interval.
(Contributed by Mario Carneiro, 20-Feb-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
| |
| Theorem | icossico 10072 |
Condition for a closed-below, open-above interval to be a subset of a
closed-below, open-above interval. (Contributed by Thierry Arnoux,
21-Sep-2017.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴[,)𝐵)) |
| |
| Theorem | iccss2 10073 |
Condition for a closed interval to be a subset of another closed
interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 28-Apr-2015.)
|
| ⊢ ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵)) |
| |
| Theorem | iccssico 10074 |
Condition for a closed interval to be a subset of a half-open interval.
(Contributed by Mario Carneiro, 9-Sep-2015.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
| |
| Theorem | iccssioo2 10075 |
Condition for a closed interval to be a subset of an open interval.
(Contributed by Mario Carneiro, 20-Feb-2015.)
|
| ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
| |
| Theorem | iccssico2 10076 |
Condition for a closed interval to be a subset of a closed-below,
open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
|
| ⊢ ((𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,)𝐵)) |
| |
| Theorem | ioomax 10077 |
The open interval from minus to plus infinity. (Contributed by NM,
6-Feb-2007.)
|
| ⊢ (-∞(,)+∞) =
ℝ |
| |
| Theorem | iccmax 10078 |
The closed interval from minus to plus infinity. (Contributed by Mario
Carneiro, 4-Jul-2014.)
|
| ⊢ (-∞[,]+∞) =
ℝ* |
| |
| Theorem | ioopos 10079 |
The set of positive reals expressed as an open interval. (Contributed by
NM, 7-May-2007.)
|
| ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| |
| Theorem | ioorp 10080 |
The set of positive reals expressed as an open interval. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
| ⊢ (0(,)+∞) =
ℝ+ |
| |
| Theorem | iooshf 10081 |
Shift the arguments of the open interval function. (Contributed by NM,
17-Aug-2008.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)))) |
| |
| Theorem | iocssre 10082 |
A closed-above interval with real upper bound is a set of reals.
(Contributed by FL, 29-May-2014.)
|
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) |
| |
| Theorem | icossre 10083 |
A closed-below interval with real lower bound is a set of reals.
(Contributed by Mario Carneiro, 14-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
| |
| Theorem | iccssre 10084 |
A closed real interval is a set of reals. (Contributed by FL,
6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| |
| Theorem | iccssxr 10085 |
A closed interval is a set of extended reals. (Contributed by FL,
28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.)
|
| ⊢ (𝐴[,]𝐵) ⊆
ℝ* |
| |
| Theorem | iocssxr 10086 |
An open-below, closed-above interval is a subset of the extended reals.
(Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro,
4-Jul-2014.)
|
| ⊢ (𝐴(,]𝐵) ⊆
ℝ* |
| |
| Theorem | icossxr 10087 |
A closed-below, open-above interval is a subset of the extended reals.
(Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro,
4-Jul-2014.)
|
| ⊢ (𝐴[,)𝐵) ⊆
ℝ* |
| |
| Theorem | ioossicc 10088 |
An open interval is a subset of its closure. (Contributed by Paul
Chapman, 18-Oct-2007.)
|
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| |
| Theorem | icossicc 10089 |
A closed-below, open-above interval is a subset of its closure.
(Contributed by Thierry Arnoux, 25-Oct-2016.)
|
| ⊢ (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵) |
| |
| Theorem | iocssicc 10090 |
A closed-above, open-below interval is a subset of its closure.
(Contributed by Thierry Arnoux, 1-Apr-2017.)
|
| ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
| |
| Theorem | ioossico 10091 |
An open interval is a subset of its closure-below. (Contributed by
Thierry Arnoux, 3-Mar-2017.)
|
| ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
| |
| Theorem | iocssioo 10092 |
Condition for a closed interval to be a subset of an open interval.
(Contributed by Thierry Arnoux, 29-Mar-2017.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 ≤ 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶(,]𝐷) ⊆ (𝐴(,)𝐵)) |
| |
| Theorem | icossioo 10093 |
Condition for a closed interval to be a subset of an open interval.
(Contributed by Thierry Arnoux, 29-Mar-2017.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 < 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶[,)𝐷) ⊆ (𝐴(,)𝐵)) |
| |
| Theorem | ioossioo 10094 |
Condition for an open interval to be a subset of an open interval.
(Contributed by Thierry Arnoux, 26-Sep-2017.)
|
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
∧ (𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵)) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵)) |
| |
| Theorem | iccsupr 10095* |
A nonempty subset of a closed real interval satisfies the conditions for
the existence of its supremum. To be useful without excluded middle,
we'll probably need to change not equal to apart, and perhaps make other
changes, but the theorem does hold as stated here. (Contributed by Paul
Chapman, 21-Jan-2008.)
|
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶 ∈ 𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
| |
| Theorem | elioopnf 10096 |
Membership in an unbounded interval of extended reals. (Contributed by
Mario Carneiro, 18-Jun-2014.)
|
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))) |
| |
| Theorem | elioomnf 10097 |
Membership in an unbounded interval of extended reals. (Contributed by
Mario Carneiro, 18-Jun-2014.)
|
| ⊢ (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))) |
| |
| Theorem | elicopnf 10098 |
Membership in a closed unbounded interval of reals. (Contributed by
Mario Carneiro, 16-Sep-2014.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵))) |
| |
| Theorem | repos 10099 |
Two ways of saying that a real number is positive. (Contributed by NM,
7-May-2007.)
|
| ⊢ (𝐴 ∈ (0(,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴)) |
| |
| Theorem | ioof 10100 |
The set of open intervals of extended reals maps to subsets of reals.
(Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro,
16-Nov-2013.)
|
| ⊢ (,):(ℝ* ×
ℝ*)⟶𝒫 ℝ |