Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-im | GIF version |
Description: Define a function whose value is the imaginary part of a complex number. See imval 10814 for its value, imcli 10876 for its closure, and replim 10823 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
df-im | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cim 10805 | . 2 class ℑ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cc 7772 | . . 3 class ℂ | |
4 | 2 | cv 1347 | . . . . 5 class 𝑥 |
5 | ci 7776 | . . . . 5 class i | |
6 | cdiv 8589 | . . . . 5 class / | |
7 | 4, 5, 6 | co 5853 | . . . 4 class (𝑥 / i) |
8 | cre 10804 | . . . 4 class ℜ | |
9 | 7, 8 | cfv 5198 | . . 3 class (ℜ‘(𝑥 / i)) |
10 | 2, 3, 9 | cmpt 4050 | . 2 class (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
11 | 1, 10 | wceq 1348 | 1 wff ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
Colors of variables: wff set class |
This definition is referenced by: imval 10814 imf 10820 |
Copyright terms: Public domain | W3C validator |