| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-im | GIF version | ||
| Description: Define a function whose value is the imaginary part of a complex number. See imval 11015 for its value, imcli 11077 for its closure, and replim 11024 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) | 
| Ref | Expression | 
|---|---|
| df-im | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cim 11006 | . 2 class ℑ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 7877 | . . 3 class ℂ | |
| 4 | 2 | cv 1363 | . . . . 5 class 𝑥 | 
| 5 | ci 7881 | . . . . 5 class i | |
| 6 | cdiv 8699 | . . . . 5 class / | |
| 7 | 4, 5, 6 | co 5922 | . . . 4 class (𝑥 / i) | 
| 8 | cre 11005 | . . . 4 class ℜ | |
| 9 | 7, 8 | cfv 5258 | . . 3 class (ℜ‘(𝑥 / i)) | 
| 10 | 2, 3, 9 | cmpt 4094 | . 2 class (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | 
| 11 | 1, 10 | wceq 1364 | 1 wff ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | 
| Colors of variables: wff set class | 
| This definition is referenced by: imval 11015 imf 11021 | 
| Copyright terms: Public domain | W3C validator |