| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-re | GIF version | ||
| Description: Define a function whose value is the real part of a complex number. See reval 11014 for its value, recli 11076 for its closure, and replim 11024 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) | 
| Ref | Expression | 
|---|---|
| df-re | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cre 11005 | . 2 class ℜ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 7877 | . . 3 class ℂ | |
| 4 | 2 | cv 1363 | . . . . 5 class 𝑥 | 
| 5 | ccj 11004 | . . . . . 6 class ∗ | |
| 6 | 4, 5 | cfv 5258 | . . . . 5 class (∗‘𝑥) | 
| 7 | caddc 7882 | . . . . 5 class + | |
| 8 | 4, 6, 7 | co 5922 | . . . 4 class (𝑥 + (∗‘𝑥)) | 
| 9 | c2 9041 | . . . 4 class 2 | |
| 10 | cdiv 8699 | . . . 4 class / | |
| 11 | 8, 9, 10 | co 5922 | . . 3 class ((𝑥 + (∗‘𝑥)) / 2) | 
| 12 | 2, 3, 11 | cmpt 4094 | . 2 class (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | 
| 13 | 1, 12 | wceq 1364 | 1 wff ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: reval 11014 ref 11020 | 
| Copyright terms: Public domain | W3C validator |