![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > replim | GIF version |
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
replim | โข (๐ด โ โ โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7973 | . 2 โข (๐ด โ โ โ โ๐ฅ โ โ โ๐ฆ โ โ ๐ด = (๐ฅ + (i ยท ๐ฆ))) | |
2 | crre 10886 | . . . . . 6 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ (โโ(๐ฅ + (i ยท ๐ฆ))) = ๐ฅ) | |
3 | crim 10887 | . . . . . . 7 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ (โโ(๐ฅ + (i ยท ๐ฆ))) = ๐ฆ) | |
4 | 3 | oveq2d 5908 | . . . . . 6 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ (i ยท (โโ(๐ฅ + (i ยท ๐ฆ)))) = (i ยท ๐ฆ)) |
5 | 2, 4 | oveq12d 5910 | . . . . 5 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ ((โโ(๐ฅ + (i ยท ๐ฆ))) + (i ยท (โโ(๐ฅ + (i ยท ๐ฆ))))) = (๐ฅ + (i ยท ๐ฆ))) |
6 | 5 | eqcomd 2195 | . . . 4 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ (๐ฅ + (i ยท ๐ฆ)) = ((โโ(๐ฅ + (i ยท ๐ฆ))) + (i ยท (โโ(๐ฅ + (i ยท ๐ฆ)))))) |
7 | id 19 | . . . . 5 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ ๐ด = (๐ฅ + (i ยท ๐ฆ))) | |
8 | fveq2 5531 | . . . . . 6 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ (โโ๐ด) = (โโ(๐ฅ + (i ยท ๐ฆ)))) | |
9 | fveq2 5531 | . . . . . . 7 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ (โโ๐ด) = (โโ(๐ฅ + (i ยท ๐ฆ)))) | |
10 | 9 | oveq2d 5908 | . . . . . 6 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ (i ยท (โโ๐ด)) = (i ยท (โโ(๐ฅ + (i ยท ๐ฆ))))) |
11 | 8, 10 | oveq12d 5910 | . . . . 5 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ ((โโ๐ด) + (i ยท (โโ๐ด))) = ((โโ(๐ฅ + (i ยท ๐ฆ))) + (i ยท (โโ(๐ฅ + (i ยท ๐ฆ)))))) |
12 | 7, 11 | eqeq12d 2204 | . . . 4 โข (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ (๐ด = ((โโ๐ด) + (i ยท (โโ๐ด))) โ (๐ฅ + (i ยท ๐ฆ)) = ((โโ(๐ฅ + (i ยท ๐ฆ))) + (i ยท (โโ(๐ฅ + (i ยท ๐ฆ))))))) |
13 | 6, 12 | syl5ibrcom 157 | . . 3 โข ((๐ฅ โ โ โง ๐ฆ โ โ) โ (๐ด = (๐ฅ + (i ยท ๐ฆ)) โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด))))) |
14 | 13 | rexlimivv 2613 | . 2 โข (โ๐ฅ โ โ โ๐ฆ โ โ ๐ด = (๐ฅ + (i ยท ๐ฆ)) โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) |
15 | 1, 14 | syl 14 | 1 โข (๐ด โ โ โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 = wceq 1364 โ wcel 2160 โwrex 2469 โcfv 5232 (class class class)co 5892 โcc 7829 โcr 7830 ici 7833 + caddc 7834 ยท cmul 7836 โcre 10869 โcim 10870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-mulrcl 7930 ax-addcom 7931 ax-mulcom 7932 ax-addass 7933 ax-mulass 7934 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-1rid 7938 ax-0id 7939 ax-rnegex 7940 ax-precex 7941 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-apti 7946 ax-pre-ltadd 7947 ax-pre-mulgt0 7948 ax-pre-mulext 7949 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-reap 8552 df-ap 8559 df-div 8650 df-2 8998 df-cj 10871 df-re 10872 df-im 10873 |
This theorem is referenced by: remim 10889 reim0b 10891 rereb 10892 mulreap 10893 cjreb 10895 reneg 10897 readd 10898 remullem 10900 imneg 10905 imadd 10906 cjcj 10912 imval2 10923 cnrecnv 10939 replimi 10943 replimd 10970 cnreim 11007 abs00ap 11091 recan 11138 efeul 11762 absef 11797 absefib 11798 efieq1re 11799 |
Copyright terms: Public domain | W3C validator |