![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > replim | GIF version |
Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
replim | ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7948 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | crre 10857 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥) | |
3 | crim 10858 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦) | |
4 | 3 | oveq2d 5886 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (ℑ‘(𝑥 + (i · 𝑦)))) = (i · 𝑦)) |
5 | 2, 4 | oveq12d 5888 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦))))) = (𝑥 + (i · 𝑦))) |
6 | 5 | eqcomd 2183 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦)))))) |
7 | id 19 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
8 | fveq2 5512 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (ℜ‘𝐴) = (ℜ‘(𝑥 + (i · 𝑦)))) | |
9 | fveq2 5512 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (ℑ‘𝐴) = (ℑ‘(𝑥 + (i · 𝑦)))) | |
10 | 9 | oveq2d 5886 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (i · (ℑ‘𝐴)) = (i · (ℑ‘(𝑥 + (i · 𝑦))))) |
11 | 8, 10 | oveq12d 5888 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦)))))) |
12 | 7, 11 | eqeq12d 2192 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (𝑥 + (i · 𝑦)) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦))))))) |
13 | 6, 12 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
14 | 13 | rexlimivv 2600 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
15 | 1, 14 | syl 14 | 1 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ‘cfv 5213 (class class class)co 5870 ℂcc 7804 ℝcr 7805 ici 7808 + caddc 7809 · cmul 7811 ℜcre 10840 ℑcim 10841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4119 ax-pow 4172 ax-pr 4207 ax-un 4431 ax-setind 4534 ax-cnex 7897 ax-resscn 7898 ax-1cn 7899 ax-1re 7900 ax-icn 7901 ax-addcl 7902 ax-addrcl 7903 ax-mulcl 7904 ax-mulrcl 7905 ax-addcom 7906 ax-mulcom 7907 ax-addass 7908 ax-mulass 7909 ax-distr 7910 ax-i2m1 7911 ax-0lt1 7912 ax-1rid 7913 ax-0id 7914 ax-rnegex 7915 ax-precex 7916 ax-cnre 7917 ax-pre-ltirr 7918 ax-pre-ltwlin 7919 ax-pre-lttrn 7920 ax-pre-apti 7921 ax-pre-ltadd 7922 ax-pre-mulgt0 7923 ax-pre-mulext 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3809 df-br 4002 df-opab 4063 df-mpt 4064 df-id 4291 df-po 4294 df-iso 4295 df-xp 4630 df-rel 4631 df-cnv 4632 df-co 4633 df-dm 4634 df-rn 4635 df-res 4636 df-ima 4637 df-iota 5175 df-fun 5215 df-fn 5216 df-f 5217 df-fv 5221 df-riota 5826 df-ov 5873 df-oprab 5874 df-mpo 5875 df-pnf 7988 df-mnf 7989 df-xr 7990 df-ltxr 7991 df-le 7992 df-sub 8124 df-neg 8125 df-reap 8526 df-ap 8533 df-div 8624 df-2 8972 df-cj 10842 df-re 10843 df-im 10844 |
This theorem is referenced by: remim 10860 reim0b 10862 rereb 10863 mulreap 10864 cjreb 10866 reneg 10868 readd 10869 remullem 10871 imneg 10876 imadd 10877 cjcj 10883 imval2 10894 cnrecnv 10910 replimi 10914 replimd 10941 cnreim 10978 abs00ap 11062 recan 11109 efeul 11733 absef 11768 absefib 11769 efieq1re 11770 |
Copyright terms: Public domain | W3C validator |