| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > replim | GIF version | ||
| Description: Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| replim | ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8075 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
| 2 | crre 11212 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℜ‘(𝑥 + (i · 𝑦))) = 𝑥) | |
| 3 | crim 11213 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (ℑ‘(𝑥 + (i · 𝑦))) = 𝑦) | |
| 4 | 3 | oveq2d 5967 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (ℑ‘(𝑥 + (i · 𝑦)))) = (i · 𝑦)) |
| 5 | 2, 4 | oveq12d 5969 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦))))) = (𝑥 + (i · 𝑦))) |
| 6 | 5 | eqcomd 2212 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦)))))) |
| 7 | id 19 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
| 8 | fveq2 5583 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (ℜ‘𝐴) = (ℜ‘(𝑥 + (i · 𝑦)))) | |
| 9 | fveq2 5583 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (ℑ‘𝐴) = (ℑ‘(𝑥 + (i · 𝑦)))) | |
| 10 | 9 | oveq2d 5967 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (i · (ℑ‘𝐴)) = (i · (ℑ‘(𝑥 + (i · 𝑦))))) |
| 11 | 8, 10 | oveq12d 5969 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦)))))) |
| 12 | 7, 11 | eqeq12d 2221 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ↔ (𝑥 + (i · 𝑦)) = ((ℜ‘(𝑥 + (i · 𝑦))) + (i · (ℑ‘(𝑥 + (i · 𝑦))))))) |
| 13 | 6, 12 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
| 14 | 13 | rexlimivv 2630 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| 15 | 1, 14 | syl 14 | 1 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 ℝcr 7931 ici 7934 + caddc 7935 · cmul 7937 ℜcre 11195 ℑcim 11196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-2 9102 df-cj 11197 df-re 11198 df-im 11199 |
| This theorem is referenced by: remim 11215 reim0b 11217 rereb 11218 mulreap 11219 cjreb 11221 reneg 11223 readd 11224 remullem 11226 imneg 11231 imadd 11232 cjcj 11238 imval2 11249 cnrecnv 11265 replimi 11269 replimd 11296 cnreim 11333 abs00ap 11417 recan 11464 efeul 12089 absef 12125 absefib 12126 efieq1re 12127 |
| Copyright terms: Public domain | W3C validator |