![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cjval | GIF version |
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjval | ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cju 8982 | . . 3 ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | |
2 | riotacl 5889 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) |
4 | oveq1 5926 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 + 𝑥) = (𝐴 + 𝑥)) | |
5 | 4 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑥) ∈ ℝ)) |
6 | oveq1 5926 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 − 𝑥) = (𝐴 − 𝑥)) | |
7 | 6 | oveq2d 5935 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (i · (𝑦 − 𝑥)) = (i · (𝐴 − 𝑥))) |
8 | 7 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((i · (𝑦 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
9 | 5, 8 | anbi12d 473 | . . . 4 ⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
10 | 9 | riotabidv 5876 | . . 3 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ)) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
11 | df-cj 10989 | . . 3 ⊢ ∗ = (𝑦 ∈ ℂ ↦ (℩𝑥 ∈ ℂ ((𝑦 + 𝑥) ∈ ℝ ∧ (i · (𝑦 − 𝑥)) ∈ ℝ))) | |
12 | 10, 11 | fvmptg 5634 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
13 | 3, 12 | mpdan 421 | 1 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃!wreu 2474 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 ℂcc 7872 ℝcr 7873 ici 7876 + caddc 7877 · cmul 7879 − cmin 8192 ∗ccj 10986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-cj 10989 |
This theorem is referenced by: cjth 10993 remim 11007 |
Copyright terms: Public domain | W3C validator |