ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imval GIF version

Theorem imval 11327
Description: The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imval (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))

Proof of Theorem imval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2 ax-icn 8062 . . . . . 6 i ∈ ℂ
32a1i 9 . . . . 5 (𝐴 ∈ ℂ → i ∈ ℂ)
4 iap0 9302 . . . . . 6 i # 0
54a1i 9 . . . . 5 (𝐴 ∈ ℂ → i # 0)
61, 3, 5divclapd 8905 . . . 4 (𝐴 ∈ ℂ → (𝐴 / i) ∈ ℂ)
7 reval 11326 . . . 4 ((𝐴 / i) ∈ ℂ → (ℜ‘(𝐴 / i)) = (((𝐴 / i) + (∗‘(𝐴 / i))) / 2))
86, 7syl 14 . . 3 (𝐴 ∈ ℂ → (ℜ‘(𝐴 / i)) = (((𝐴 / i) + (∗‘(𝐴 / i))) / 2))
9 cjcl 11325 . . . . . 6 ((𝐴 / i) ∈ ℂ → (∗‘(𝐴 / i)) ∈ ℂ)
106, 9syl 14 . . . . 5 (𝐴 ∈ ℂ → (∗‘(𝐴 / i)) ∈ ℂ)
116, 10addcld 8134 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / i) + (∗‘(𝐴 / i))) ∈ ℂ)
1211halfcld 9324 . . 3 (𝐴 ∈ ℂ → (((𝐴 / i) + (∗‘(𝐴 / i))) / 2) ∈ ℂ)
138, 12eqeltrd 2286 . 2 (𝐴 ∈ ℂ → (ℜ‘(𝐴 / i)) ∈ ℂ)
14 oveq1 5981 . . . 4 (𝑥 = 𝐴 → (𝑥 / i) = (𝐴 / i))
1514fveq2d 5607 . . 3 (𝑥 = 𝐴 → (ℜ‘(𝑥 / i)) = (ℜ‘(𝐴 / i)))
16 df-im 11321 . . 3 ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
1715, 16fvmptg 5683 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘(𝐴 / i)) ∈ ℂ) → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
1813, 17mpdan 421 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  ici 7969   + caddc 7970   # cap 8696   / cdiv 8787  2c2 9129  ccj 11316  cre 11317  cim 11318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-2 9137  df-cj 11319  df-re 11320  df-im 11321
This theorem is referenced by:  imre  11328  reim  11329  imf  11333  crim  11335
  Copyright terms: Public domain W3C validator