Theorem List for Intuitionistic Logic Explorer - 10801-10900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | absge0i 10801 |
Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ 0 ≤ (abs‘𝐴) |
|
Theorem | absval2i 10802 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
|
Theorem | abs00i 10803 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by NM,
28-Jul-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) |
|
Theorem | absgt0api 10804 |
The absolute value of a nonzero number is positive. Remark in [Apostol]
p. 363. (Contributed by NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 ↔ 0 < (abs‘𝐴)) |
|
Theorem | absnegi 10805 |
Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
|
Theorem | abscji 10806 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢
(abs‘(∗‘𝐴)) = (abs‘𝐴) |
|
Theorem | releabsi 10807 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) |
|
Theorem | abssubi 10808 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
|
Theorem | absmuli 10809 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
|
Theorem | sqabsaddi 10810 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | sqabssubi 10811 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | absdivapzi 10812 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrii 10813 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
|
Theorem | abs3difi 10814 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
|
Theorem | abs3lemi 10815 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | rpsqrtcld 10816 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
|
Theorem | sqrtgt0d 10817 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
|
Theorem | absnidd 10818 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
|
Theorem | leabsd 10819 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
|
Theorem | absred 10820 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
|
Theorem | resqrtcld 10821 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
|
Theorem | sqrtmsqd 10822 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
|
Theorem | sqrtsqd 10823 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
|
Theorem | sqrtge0d 10824 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
|
Theorem | absidd 10825 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
|
Theorem | sqrtdivd 10826 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
|
Theorem | sqrtmuld 10827 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
|
Theorem | sqrtsq2d 10828 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
|
Theorem | sqrtled 10829 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
|
Theorem | sqrtltd 10830 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
|
Theorem | sqr11d 10831 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
|
Theorem | absltd 10832 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
|
Theorem | absled 10833 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
|
Theorem | abssubge0d 10834 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
|
Theorem | abssuble0d 10835 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
|
Theorem | absdifltd 10836 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
|
Theorem | absdifled 10837 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
|
Theorem | icodiamlt 10838 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
|
Theorem | abscld 10839 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
|
Theorem | absvalsqd 10840 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
|
Theorem | absvalsq2d 10841 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
|
Theorem | absge0d 10842 |
Absolute value is nonnegative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
|
Theorem | absval2d 10843 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)))) |
|
Theorem | abs00d 10844 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0)
⇒ ⊢ (𝜑 → 𝐴 = 0) |
|
Theorem | absne0d 10845 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) |
|
Theorem | absrpclapd 10846 |
The absolute value of a complex number apart from zero is a positive
real. (Contributed by Jim Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
|
Theorem | absnegd 10847 |
Absolute value of negative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) |
|
Theorem | abscjd 10848 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
|
Theorem | releabsd 10849 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
|
Theorem | absexpd 10850 |
Absolute value of positive integer exponentiation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
|
Theorem | abssubd 10851 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
|
Theorem | absmuld 10852 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
|
Theorem | absdivapd 10853 |
Absolute value distributes over division. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrid 10854 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difd 10855 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs2dif2d 10856 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difabsd 10857 |
Absolute value of difference of absolute values. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs3difd 10858 |
Absolute value of differences around common element. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
|
Theorem | abs3lemd 10859 |
Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < (𝐷 / 2)) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | qdenre 10860* |
The rational numbers are dense in ℝ: any real
number can be
approximated with arbitrary precision by a rational number. For order
theoretic density, see qbtwnre 9921. (Contributed by BJ, 15-Oct-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) →
∃𝑥 ∈ ℚ
(abs‘(𝑥 −
𝐴)) < 𝐵) |
|
3.7.5 The maximum of two real
numbers
|
|
Theorem | maxcom 10861 |
The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
|
Theorem | maxabsle 10862 |
An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon,
20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxleim 10863 |
Value of maximum when we know which number is larger. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
|
Theorem | maxabslemab 10864 |
Lemma for maxabs 10867. A variation of maxleim 10863- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = 𝐵) |
|
Theorem | maxabslemlub 10865 |
Lemma for maxabs 10867. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | maxabslemval 10866* |
Lemma for maxabs 10867. Value of the supremum. (Contributed by
Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
|
Theorem | maxabs 10867 |
Maximum of two real numbers in terms of absolute value. (Contributed by
Jim Kingdon, 20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxcl 10868 |
The maximum of two real numbers is a real number. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
|
Theorem | maxle1 10869 |
The maximum of two reals is no smaller than the first real. Lemma 3.10 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxle2 10870 |
The maximum of two reals is no smaller than the second real. Lemma 3.10
of [Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxleast 10871 |
The maximum of two reals is a least upper bound. Lemma 3.11 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |
|
Theorem | maxleastb 10872 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Jim Kingdon, 31-Jan-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
|
Theorem | maxleastlt 10873 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | maxleb 10874 |
Equivalence of ≤ and being equal to the maximum of
two reals. Lemma
3.12 of [Geuvers], p. 10. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
|
Theorem | dfabsmax 10875 |
Absolute value of a real number in terms of maximum. Definition 3.13 of
[Geuvers], p. 11. (Contributed by BJ and
Jim Kingdon, 21-Dec-2021.)
|
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
|
Theorem | maxltsup 10876 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
|
Theorem | max0addsup 10877 |
The sum of the positive and negative part functions is the absolute value
function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
|
⊢ (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) +
sup({-𝐴, 0}, ℝ, <
)) = (abs‘𝐴)) |
|
Theorem | rexanre 10878* |
Combine two different upper real properties into one. (Contributed by
Mario Carneiro, 8-May-2016.)
|
⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |
|
Theorem | rexico 10879* |
Restrict the base of an upper real quantifier to an upper real set.
(Contributed by Mario Carneiro, 12-May-2016.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
|
Theorem | maxclpr 10880 |
The maximum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 8996 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 1-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
|
Theorem | rpmaxcl 10881 |
The maximum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 10-Nov-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
|
Theorem | zmaxcl 10882 |
The maximum of two integers is an integer. (Contributed by Jim Kingdon,
27-Sep-2022.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℤ) |
|
Theorem | 2zsupmax 10883 |
Two ways to express the maximum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 22-Jan-2023.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
|
Theorem | fimaxre2 10884* |
A nonempty finite set of real numbers has an upper bound. (Contributed
by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro,
13-Feb-2014.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | negfi 10885* |
The negation of a finite set of real numbers is finite. (Contributed by
AV, 9-Aug-2020.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) |
|
3.7.6 The minimum of two real
numbers
|
|
Theorem | mincom 10886 |
The minimum of two reals is commutative. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
|
Theorem | minmax 10887 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
|
Theorem | mincl 10888 |
The minumum of two real numbers is a real number. (Contributed by Jim
Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
|
Theorem | min1inf 10889 |
The minimum of two numbers is less than or equal to the first.
(Contributed by Jim Kingdon, 8-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴) |
|
Theorem | min2inf 10890 |
The minimum of two numbers is less than or equal to the second.
(Contributed by Jim Kingdon, 9-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵) |
|
Theorem | lemininf 10891 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by NM, 3-Aug-2007.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
|
Theorem | ltmininf 10892 |
Two ways of saying a number is less than the minimum of two others.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
|
Theorem | minabs 10893 |
The minimum of two real numbers in terms of absolute value. (Contributed
by Jim Kingdon, 15-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | minclpr 10894 |
The minimum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 8996 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 23-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
|
Theorem | rpmincl 10895 |
The minumum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
|
Theorem | bdtrilem 10896 |
Lemma for bdtri 10897. (Contributed by Steven Nguyen and Jim
Kingdon,
17-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |
|
Theorem | bdtri 10897 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < ))) |
|
Theorem | mul0inf 10898 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 10720 and mulap0bd 8325 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
|
3.7.7 The maximum of two extended
reals
|
|
Theorem | xrmaxleim 10899 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)) |
|
Theorem | xrmaxiflemcl 10900 |
Lemma for xrmaxif 10906. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |