HomeHome Intuitionistic Logic Explorer
Theorem List (p. 109 of 145)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10801-10900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremshftfval 10801* The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
 
Theoremshftdm 10802* Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
 
Theoremshftfib 10803 Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 
Theoremshftfn 10804* Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
𝐹 ∈ V       ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
 
Theoremshftval 10805 Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
 
Theoremshftval2 10806 Value of a sequence shifted by 𝐴𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶)))
 
Theoremshftval3 10807 Value of a sequence shifted by 𝐴𝐵. (Contributed by NM, 20-Jul-2005.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴𝐵))‘𝐴) = (𝐹𝐵))
 
Theoremshftval4 10808 Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
 
Theoremshftval5 10809 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹𝐵))
 
Theoremshftf 10810* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
 
Theorem2shfti 10811 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵)))
 
Theoremshftidt2 10812 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       (𝐹 shift 0) = (𝐹 ↾ ℂ)
 
Theoremshftidt 10813 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹𝐴))
 
Theoremshftcan1 10814 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))
 
Theoremshftcan2 10815 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
𝐹 ∈ V       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹𝐵))
 
Theoremshftvalg 10816 Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
 
Theoremshftval4g 10817 Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
 
Theoremseq3shft 10818* Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
(𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀𝑁))) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀𝑁)( + , 𝐹) shift 𝑁))
 
4.7.2  Real and imaginary parts; conjugate
 
Syntaxccj 10819 Extend class notation to include complex conjugate function.
class
 
Syntaxcre 10820 Extend class notation to include real part of a complex number.
class
 
Syntaxcim 10821 Extend class notation to include imaginary part of a complex number.
class
 
Definitiondf-cj 10822* Define the complex conjugate function. See cjcli 10893 for its closure and cjval 10825 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
 
Definitiondf-re 10823 Define a function whose value is the real part of a complex number. See reval 10829 for its value, recli 10891 for its closure, and replim 10839 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
 
Definitiondf-im 10824 Define a function whose value is the imaginary part of a complex number. See imval 10830 for its value, imcli 10892 for its closure, and replim 10839 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
 
Theoremcjval 10825* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
 
Theoremcjth 10826 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
 
Theoremcjf 10827 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
∗:ℂ⟶ℂ
 
Theoremcjcl 10828 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
 
Theoremreval 10829 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
 
Theoremimval 10830 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
 
Theoremimre 10831 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
 
Theoremreim 10832 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
 
Theoremrecl 10833 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
 
Theoremimcl 10834 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
 
Theoremref 10835 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℜ:ℂ⟶ℝ
 
Theoremimf 10836 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
ℑ:ℂ⟶ℝ
 
Theoremcrre 10837 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
 
Theoremcrim 10838 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
 
Theoremreplim 10839 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
 
Theoremremim 10840 Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
 
Theoremreim0 10841 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
(𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
 
Theoremreim0b 10842 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
 
Theoremrereb 10843 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
 
Theoremmulreap 10844 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
 
Theoremrere 10845 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
(𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
 
Theoremcjreb 10846 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴))
 
Theoremrecj 10847 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
 
Theoremreneg 10848 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
 
Theoremreadd 10849 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
 
Theoremresub 10850 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵)))
 
Theoremremullem 10851 Lemma for remul 10852, immul 10859, and cjmul 10865. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
 
Theoremremul 10852 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremremul2 10853 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵)))
 
Theoremredivap 10854 Real part of a division. Related to remul2 10853. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))
 
Theoremimcj 10855 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴))
 
Theoremimneg 10856 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
 
Theoremimadd 10857 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
 
Theoremimsub 10858 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
 
Theoremimmul 10859 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
 
Theoremimmul2 10860 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
 
Theoremimdivap 10861 Imaginary part of a division. Related to immul2 10860. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))
 
Theoremcjre 10862 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
(𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
 
Theoremcjcj 10863 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
 
Theoremcjadd 10864 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 
Theoremcjmul 10865 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
 
Theoremipcnval 10866 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
 
Theoremcjmulrcl 10867 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
 
Theoremcjmulval 10868 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremcjmulge0 10869 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
 
Theoremcjneg 10870 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
 
Theoremaddcj 10871 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴)))
 
Theoremcjsub 10872 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴𝐵)) = ((∗‘𝐴) − (∗‘𝐵)))
 
Theoremcjexp 10873 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴𝑁)) = ((∗‘𝐴)↑𝑁))
 
Theoremimval2 10874 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
(𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
 
Theoremre0 10875 The real part of zero. (Contributed by NM, 27-Jul-1999.)
(ℜ‘0) = 0
 
Theoremim0 10876 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
(ℑ‘0) = 0
 
Theoremre1 10877 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘1) = 1
 
Theoremim1 10878 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘1) = 0
 
Theoremrei 10879 The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℜ‘i) = 0
 
Theoremimi 10880 The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
(ℑ‘i) = 1
 
Theoremcj0 10881 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
(∗‘0) = 0
 
Theoremcji 10882 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
(∗‘i) = -i
 
Theoremcjreim 10883 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
 
Theoremcjreim2 10884 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵)))
 
Theoremcj11 10885 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) = (∗‘𝐵) ↔ 𝐴 = 𝐵))
 
Theoremcjap 10886 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
 
Theoremcjap0 10887 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0))
 
Theoremcjne0 10888 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 10887 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
(𝐴 ∈ ℂ → (𝐴 ≠ 0 ↔ (∗‘𝐴) ≠ 0))
 
Theoremcjdivap 10889 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
Theoremcnrecnv 10890* The inverse to the canonical bijection from (ℝ × ℝ) to from cnref1o 9626. (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))       𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
 
Theoremrecli 10891 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ∈ ℝ
 
Theoremimcli 10892 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (ℑ‘𝐴) ∈ ℝ
 
Theoremcjcli 10893 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘𝐴) ∈ ℂ
 
Theoremreplimi 10894 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))
 
Theoremcjcji 10895 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ       (∗‘(∗‘𝐴)) = 𝐴
 
Theoremreim0bi 10896 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)
 
Theoremrerebi 10897 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)
 
Theoremcjrebi 10898 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)
 
Theoremrecji 10899 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)
 
Theoremimcji 10900 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14452
  Copyright terms: Public domain < Previous  Next >