| Intuitionistic Logic Explorer Theorem List (p. 109 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | expge1d 10801 | A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 1 ≤ (𝐴↑𝑁)) | ||
| Theorem | sqoddm1div8 10802 | A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2)) | ||
| Theorem | nnsqcld 10803 | The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) | ||
| Theorem | nnexpcld 10804 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) | ||
| Theorem | nn0expcld 10805 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ0) | ||
| Theorem | rpexpcld 10806 | Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) | ||
| Theorem | reexpclzapd 10807 | Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
| Theorem | resqcld 10808 | Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℝ) | ||
| Theorem | sqge0d 10809 | A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑2)) | ||
| Theorem | sqgt0apd 10810 | The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < (𝐴↑2)) | ||
| Theorem | leexp2ad 10811 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
| Theorem | leexp2rd 10812 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
| Theorem | lt2sqd 10813 | The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
| Theorem | le2sqd 10814 | The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
| Theorem | sq11d 10815 | The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | sq11ap 10816 | Analogue to sq11 10721 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) # (𝐵↑2) ↔ 𝐴 # 𝐵)) | ||
| Theorem | zzlesq 10817 | An integer is less than or equal to its square. (Contributed by BJ, 6-Feb-2025.) |
| ⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁↑2)) | ||
| Theorem | nn0ltexp2 10818 | Special case of ltexp2 15261 which we use here because we haven't yet defined df-rpcxp 15179 which is used in the current proof of ltexp2 15261. (Contributed by Jim Kingdon, 7-Oct-2024.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴↑𝑀) < (𝐴↑𝑁))) | ||
| Theorem | nn0leexp2 10819 | Ordering law for exponentiation. (Contributed by Jim Kingdon, 9-Oct-2024.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 1 < 𝐴) → (𝑀 ≤ 𝑁 ↔ (𝐴↑𝑀) ≤ (𝐴↑𝑁))) | ||
| Theorem | mulsubdivbinom2ap 10820 | The square of a binomial with factor minus a number divided by a number apart from zero. (Contributed by AV, 19-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶))) | ||
| Theorem | sq10 10821 | The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ (;10↑2) = ;;100 | ||
| Theorem | sq10e99m1 10822 | The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ (;10↑2) = (;99 + 1) | ||
| Theorem | 3dec 10823 | A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) | ||
| Theorem | expcanlem 10824 | Lemma for expcan 10825. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → ((𝐴↑𝑀) ≤ (𝐴↑𝑁) → 𝑀 ≤ 𝑁)) | ||
| Theorem | expcan 10825 | Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | expcand 10826 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → (𝐴↑𝑀) = (𝐴↑𝑁)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | apexp1 10827 | Exponentiation and apartness. (Contributed by Jim Kingdon, 9-Jul-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # (𝐵↑𝑁) → 𝐴 # 𝐵)) | ||
| Theorem | nn0le2msqd 10828 | The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
| Theorem | nn0opthlem1d 10829 | A rather pretty lemma for nn0opth2 10833. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) | ||
| Theorem | nn0opthlem2d 10830 | Lemma for nn0opth2 10833. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))) | ||
| Theorem | nn0opthd 10831 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3632 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | nn0opth2d 10832 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10831. (Contributed by Jim Kingdon, 31-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | nn0opth2 10833 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10831. (Contributed by NM, 22-Jul-2004.) |
| ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Syntax | cfa 10834 | Extend class notation to include the factorial of nonnegative integers. |
| class ! | ||
| Definition | df-fac 10835 | Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 15458). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
| ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | ||
| Theorem | facnn 10836 | Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | ||
| Theorem | fac0 10837 | The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (!‘0) = 1 | ||
| Theorem | fac1 10838 | The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (!‘1) = 1 | ||
| Theorem | facp1 10839 | The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | ||
| Theorem | fac2 10840 | The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (!‘2) = 2 | ||
| Theorem | fac3 10841 | The factorial of 3. (Contributed by NM, 17-Mar-2005.) |
| ⊢ (!‘3) = 6 | ||
| Theorem | fac4 10842 | The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (!‘4) = ;24 | ||
| Theorem | facnn2 10843 | Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.) |
| ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | ||
| Theorem | faccl 10844 | Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | ||
| Theorem | faccld 10845 | Closure of the factorial function, deduction version of faccl 10844. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) | ||
| Theorem | facne0 10846 | The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0) | ||
| Theorem | facdiv 10847 | A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | ||
| Theorem | facndiv 10848 | No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) | ||
| Theorem | facwordi 10849 | Ordering property of factorial. (Contributed by NM, 9-Dec-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (!‘𝑀) ≤ (!‘𝑁)) | ||
| Theorem | faclbnd 10850 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
| Theorem | faclbnd2 10851 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) | ||
| Theorem | faclbnd3 10852 | A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑𝑁) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
| Theorem | faclbnd6 10853 | Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))) | ||
| Theorem | facubnd 10854 | An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁↑𝑁)) | ||
| Theorem | facavg 10855 | The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))) | ||
| Syntax | cbc 10856 | Extend class notation to include the binomial coefficient operation (combinatorial choose operation). |
| class C | ||
| Definition | df-bc 10857* |
Define the binomial coefficient operation. For example,
(5C3) = 10 (ex-bc 15459).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
| ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | ||
| Theorem | bcval 10858 | Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 10859 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) | ||
| Theorem | bcval2 10859 | Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | ||
| Theorem | bcval3 10860 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | ||
| Theorem | bcval4 10861 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) | ||
| Theorem | bcrpcl 10862 | Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10877.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) | ||
| Theorem | bccmpl 10863 | "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁 − 𝐾))) | ||
| Theorem | bcn0 10864 | 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C0) = 1) | ||
| Theorem | bc0k 10865 | The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 10864). (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| ⊢ (𝐾 ∈ ℕ → (0C𝐾) = 0) | ||
| Theorem | bcnn 10866 | 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1) | ||
| Theorem | bcn1 10867 | Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) | ||
| Theorem | bcnp1n 10868 | Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1)) | ||
| Theorem | bcm1k 10869 | The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
| ⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) | ||
| Theorem | bcp1n 10870 | The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
| ⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) | ||
| Theorem | bcp1nk 10871 | The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1)))) | ||
| Theorem | bcval5 10872 | Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁 − 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁 − 𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾))) | ||
| Theorem | bcn2 10873 | Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2)) | ||
| Theorem | bcp1m1 10874 | Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | ||
| Theorem | bcpasc 10875 | Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) | ||
| Theorem | bccl 10876 | A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | ||
| Theorem | bccl2 10877 | A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | ||
| Theorem | bcn2m1 10878 | Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) | ||
| Theorem | bcn2p1 10879 | Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) | ||
| Theorem | permnn 10880 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
| ⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | ||
| Theorem | bcnm1 10881 | The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | ||
| Theorem | 4bc3eq4 10882 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) |
| ⊢ (4C3) = 4 | ||
| Theorem | 4bc2eq6 10883 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| ⊢ (4C2) = 6 | ||
| Syntax | chash 10884 | Extend the definition of a class to include the set size function. |
| class ♯ | ||
| Definition | df-ihash 10885* |
Define the set size function ♯, which gives the
cardinality of a
finite set as a member of ℕ0,
and assigns all infinite sets the
value +∞. For example, (♯‘{0, 1, 2}) = 3.
Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8626). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets). This definition (in terms of ∪ and ≼) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.) |
| ⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | ||
| Theorem | hashinfuni 10886* | The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| ⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) | ||
| Theorem | hashinfom 10887 | The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| ⊢ (ω ≼ 𝐴 → (♯‘𝐴) = +∞) | ||
| Theorem | hashennnuni 10888* | The ordinal size of a set equinumerous to an element of ω is that element of ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = 𝑁) | ||
| Theorem | hashennn 10889* | The size of a set equinumerous to an element of ω. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≈ 𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑁)) | ||
| Theorem | hashcl 10890 | Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | ||
| Theorem | hashfiv01gt1 10891 | The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | ||
| Theorem | hashfz1 10892 | The set (1...𝑁) has 𝑁 elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | ||
| Theorem | hashen 10893 | Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | ||
| Theorem | hasheqf1o 10894* | The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | ||
| Theorem | fiinfnf1o 10895* | There is no bijection between a finite set and an infinite set. By infnfi 6965 the theorem would also hold if "infinite" were expressed as ω ≼ 𝐵. (Contributed by Alexander van der Vekens, 25-Dec-2017.) |
| ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ¬ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | ||
| Theorem | fihasheqf1oi 10896 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) | ||
| Theorem | fihashf1rn 10897 | The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) | ||
| Theorem | fihasheqf1od 10898 | The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) ⇒ ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) | ||
| Theorem | fz1eqb 10899 | Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((1...𝑀) = (1...𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | filtinf 10900 | The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| ⊢ ((𝐴 ∈ Fin ∧ ω ≼ 𝐵) → (♯‘𝐴) < (♯‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |