ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ioo GIF version

Definition df-ioo 9986
Description: Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioo (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioo
StepHypRef Expression
1 cioo 9982 . 2 class (,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 8079 . . 3 class *
52cv 1363 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1363 . . . . . 6 class 𝑧
8 clt 8080 . . . . . 6 class <
95, 7, 8wbr 4034 . . . . 5 wff 𝑥 < 𝑧
103cv 1363 . . . . . 6 class 𝑦
117, 10, 8wbr 4034 . . . . 5 wff 𝑧 < 𝑦
129, 11wa 104 . . . 4 wff (𝑥 < 𝑧𝑧 < 𝑦)
1312, 6, 4crab 2479 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)}
142, 3, 4, 4, 13cmpo 5927 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
151, 14wceq 1364 1 wff (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
Colors of variables: wff set class
This definition is referenced by:  iooex  10001  iooval  10002  elioo3g  10004  elioo1  10005  iooss1  10010  iooss2  10011  eliooxr  10021  iccssioo  10036  ioossicc  10053  ioossico  10056  iocssioo  10057  icossioo  10058  ioossioo  10059  ioof  10065  ioodisj  10087
  Copyright terms: Public domain W3C validator