Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioof | GIF version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 9813 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ioossre 9840 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
3 | df-ov 5828 | . . . . . . 7 ⊢ (𝑥(,)𝑦) = ((,)‘〈𝑥, 𝑦〉) | |
4 | iooex 9812 | . . . . . . . 8 ⊢ (,) ∈ V | |
5 | vex 2715 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
6 | vex 2715 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | opex 4190 | . . . . . . . 8 ⊢ 〈𝑥, 𝑦〉 ∈ V |
8 | 4, 7 | fvex 5489 | . . . . . . 7 ⊢ ((,)‘〈𝑥, 𝑦〉) ∈ V |
9 | 3, 8 | eqeltri 2230 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V |
10 | 9 | elpw 3549 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
11 | 2, 10 | mpbir 145 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
12 | 1, 11 | eqeltrrdi 2249 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
13 | 12 | rgen2a 2511 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
14 | df-ioo 9797 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
15 | 14 | fmpo 6150 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
16 | 13, 15 | mpbi 144 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2128 ∀wral 2435 {crab 2439 Vcvv 2712 ⊆ wss 3102 𝒫 cpw 3543 〈cop 3563 class class class wbr 3966 × cxp 4585 ⟶wf 5167 ‘cfv 5171 (class class class)co 5825 ℝcr 7732 ℝ*cxr 7912 < clt 7913 (,)cioo 9793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-id 4254 df-po 4257 df-iso 4258 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-fv 5179 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-ioo 9797 |
This theorem is referenced by: unirnioo 9878 dfioo2 9879 ioorebasg 9880 qtopbasss 12963 retopbas 12965 tgioo 12988 tgqioo 12989 |
Copyright terms: Public domain | W3C validator |