| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioof | GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10037 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 10064 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | df-ov 5954 | . . . . . . 7 ⊢ (𝑥(,)𝑦) = ((,)‘〈𝑥, 𝑦〉) | |
| 4 | iooex 10036 | . . . . . . . 8 ⊢ (,) ∈ V | |
| 5 | vex 2776 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 6 | vex 2776 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | opex 4277 | . . . . . . . 8 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 8 | 4, 7 | fvex 5603 | . . . . . . 7 ⊢ ((,)‘〈𝑥, 𝑦〉) ∈ V |
| 9 | 3, 8 | eqeltri 2279 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V |
| 10 | 9 | elpw 3623 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 11 | 2, 10 | mpbir 146 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 12 | 1, 11 | eqeltrrdi 2298 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 13 | 12 | rgen2a 2561 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 14 | df-ioo 10021 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 15 | 14 | fmpo 6294 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 16 | 13, 15 | mpbi 145 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2177 ∀wral 2485 {crab 2489 Vcvv 2773 ⊆ wss 3167 𝒫 cpw 3617 〈cop 3637 class class class wbr 4047 × cxp 4677 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ℝcr 7931 ℝ*cxr 8113 < clt 8114 (,)cioo 10017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-ioo 10021 |
| This theorem is referenced by: unirnioo 10102 dfioo2 10103 ioorebasg 10104 qtopbasss 15037 retopbas 15039 tgioo 15070 tgqioo 15071 |
| Copyright terms: Public domain | W3C validator |