| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioof | GIF version | ||
| Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10072 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 2 | ioossre 10099 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
| 3 | df-ov 5977 | . . . . . . 7 ⊢ (𝑥(,)𝑦) = ((,)‘〈𝑥, 𝑦〉) | |
| 4 | iooex 10071 | . . . . . . . 8 ⊢ (,) ∈ V | |
| 5 | vex 2782 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 6 | vex 2782 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 7 | 5, 6 | opex 4294 | . . . . . . . 8 ⊢ 〈𝑥, 𝑦〉 ∈ V |
| 8 | 4, 7 | fvex 5623 | . . . . . . 7 ⊢ ((,)‘〈𝑥, 𝑦〉) ∈ V |
| 9 | 3, 8 | eqeltri 2282 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V |
| 10 | 9 | elpw 3635 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
| 11 | 2, 10 | mpbir 146 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
| 12 | 1, 11 | eqeltrrdi 2301 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
| 13 | 12 | rgen2a 2564 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
| 14 | df-ioo 10056 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 15 | 14 | fmpo 6317 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
| 16 | 13, 15 | mpbi 145 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2180 ∀wral 2488 {crab 2492 Vcvv 2779 ⊆ wss 3177 𝒫 cpw 3629 〈cop 3649 class class class wbr 4062 × cxp 4694 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 ℝ*cxr 8148 < clt 8149 (,)cioo 10052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-ioo 10056 |
| This theorem is referenced by: unirnioo 10137 dfioo2 10138 ioorebasg 10139 qtopbasss 15160 retopbas 15162 tgioo 15193 tgqioo 15194 |
| Copyright terms: Public domain | W3C validator |