ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof GIF version

Theorem ioof 9747
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9684 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 9711 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 df-ov 5770 . . . . . . 7 (𝑥(,)𝑦) = ((,)‘⟨𝑥, 𝑦⟩)
4 iooex 9683 . . . . . . . 8 (,) ∈ V
5 vex 2684 . . . . . . . . 9 𝑥 ∈ V
6 vex 2684 . . . . . . . . 9 𝑦 ∈ V
75, 6opex 4146 . . . . . . . 8 𝑥, 𝑦⟩ ∈ V
84, 7fvex 5434 . . . . . . 7 ((,)‘⟨𝑥, 𝑦⟩) ∈ V
93, 8eqeltri 2210 . . . . . 6 (𝑥(,)𝑦) ∈ V
109elpw 3511 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
112, 10mpbir 145 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
121, 11eqeltrrdi 2229 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
1312rgen2a 2484 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
14 df-ioo 9668 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
1514fmpo 6092 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
1613, 15mpbi 144 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff set class
Syntax hints:  wa 103  wcel 1480  wral 2414  {crab 2418  Vcvv 2681  wss 3066  𝒫 cpw 3505  cop 3525   class class class wbr 3924   × cxp 4532  wf 5114  cfv 5118  (class class class)co 5767  cr 7612  *cxr 7792   < clt 7793  (,)cioo 9664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-ioo 9668
This theorem is referenced by:  unirnioo  9749  dfioo2  9750  ioorebasg  9751  qtopbasss  12679  retopbas  12681  tgioo  12704  tgqioo  12705
  Copyright terms: Public domain W3C validator