ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof GIF version

Theorem ioof 9358
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof (,):(ℝ* × ℝ*)⟶𝒫 ℝ

Proof of Theorem ioof
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9295 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
2 ioossre 9322 . . . . 5 (𝑥(,)𝑦) ⊆ ℝ
3 df-ov 5637 . . . . . . 7 (𝑥(,)𝑦) = ((,)‘⟨𝑥, 𝑦⟩)
4 iooex 9294 . . . . . . . 8 (,) ∈ V
5 vex 2622 . . . . . . . . 9 𝑥 ∈ V
6 vex 2622 . . . . . . . . 9 𝑦 ∈ V
75, 6opex 4047 . . . . . . . 8 𝑥, 𝑦⟩ ∈ V
84, 7fvex 5309 . . . . . . 7 ((,)‘⟨𝑥, 𝑦⟩) ∈ V
93, 8eqeltri 2160 . . . . . 6 (𝑥(,)𝑦) ∈ V
109elpw 3431 . . . . 5 ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ)
112, 10mpbir 144 . . . 4 (𝑥(,)𝑦) ∈ 𝒫 ℝ
121, 11syl6eqelr 2179 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ)
1312rgen2a 2429 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ
14 df-ioo 9279 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
1514fmpt2 5953 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
1613, 15mpbi 143 1 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1438  wral 2359  {crab 2363  Vcvv 2619  wss 2997  𝒫 cpw 3425  cop 3444   class class class wbr 3837   × cxp 4426  wf 4998  cfv 5002  (class class class)co 5634  cr 7328  *cxr 7500   < clt 7501  (,)cioo 9275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-ioo 9279
This theorem is referenced by:  unirnioo  9360  dfioo2  9361  ioorebasg  9362
  Copyright terms: Public domain W3C validator