Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioof | GIF version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 9844 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ioossre 9871 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
3 | df-ov 5845 | . . . . . . 7 ⊢ (𝑥(,)𝑦) = ((,)‘〈𝑥, 𝑦〉) | |
4 | iooex 9843 | . . . . . . . 8 ⊢ (,) ∈ V | |
5 | vex 2729 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
6 | vex 2729 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | opex 4207 | . . . . . . . 8 ⊢ 〈𝑥, 𝑦〉 ∈ V |
8 | 4, 7 | fvex 5506 | . . . . . . 7 ⊢ ((,)‘〈𝑥, 𝑦〉) ∈ V |
9 | 3, 8 | eqeltri 2239 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V |
10 | 9 | elpw 3565 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
11 | 2, 10 | mpbir 145 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
12 | 1, 11 | eqeltrrdi 2258 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
13 | 12 | rgen2a 2520 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
14 | df-ioo 9828 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
15 | 14 | fmpo 6169 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
16 | 13, 15 | mpbi 144 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2136 ∀wral 2444 {crab 2448 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 〈cop 3579 class class class wbr 3982 × cxp 4602 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 ℝ*cxr 7932 < clt 7933 (,)cioo 9824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-ioo 9828 |
This theorem is referenced by: unirnioo 9909 dfioo2 9910 ioorebasg 9911 qtopbasss 13161 retopbas 13163 tgioo 13186 tgqioo 13187 |
Copyright terms: Public domain | W3C validator |