ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ioc GIF version

Definition df-ioc 9850
Description: Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ioc (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ioc
StepHypRef Expression
1 cioc 9846 . 2 class (,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 7953 . . 3 class *
52cv 1347 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1347 . . . . . 6 class 𝑧
8 clt 7954 . . . . . 6 class <
95, 7, 8wbr 3989 . . . . 5 wff 𝑥 < 𝑧
103cv 1347 . . . . . 6 class 𝑦
11 cle 7955 . . . . . 6 class
127, 10, 11wbr 3989 . . . . 5 wff 𝑧𝑦
139, 12wa 103 . . . 4 wff (𝑥 < 𝑧𝑧𝑦)
1413, 6, 4crab 2452 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)}
152, 3, 4, 4, 14cmpo 5855 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
161, 15wceq 1348 1 wff (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
Colors of variables: wff set class
This definition is referenced by:  iocval  9875  elioc1  9879  iocssxr  9914  iocssicc  9918  iocssioo  9920
  Copyright terms: Public domain W3C validator