Detailed syntax breakdown of Definition df-ioc
| Step | Hyp | Ref
| Expression |
| 1 | | cioc 9964 |
. 2
class
(,] |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cxr 8060 |
. . 3
class
ℝ* |
| 5 | 2 | cv 1363 |
. . . . . 6
class 𝑥 |
| 6 | | vz |
. . . . . . 7
setvar 𝑧 |
| 7 | 6 | cv 1363 |
. . . . . 6
class 𝑧 |
| 8 | | clt 8061 |
. . . . . 6
class
< |
| 9 | 5, 7, 8 | wbr 4033 |
. . . . 5
wff 𝑥 < 𝑧 |
| 10 | 3 | cv 1363 |
. . . . . 6
class 𝑦 |
| 11 | | cle 8062 |
. . . . . 6
class
≤ |
| 12 | 7, 10, 11 | wbr 4033 |
. . . . 5
wff 𝑧 ≤ 𝑦 |
| 13 | 9, 12 | wa 104 |
. . . 4
wff (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦) |
| 14 | 13, 6, 4 | crab 2479 |
. . 3
class {𝑧 ∈ ℝ*
∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 5924 |
. 2
class (𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 16 | 1, 15 | wceq 1364 |
1
wff (,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |