![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioodisj | GIF version |
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
ioodisj | ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 534 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) | |
2 | iooss1 9985 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷)) | |
3 | 1, 2 | sylancom 420 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷)) |
4 | ioossicc 10028 | . . . . 5 ⊢ (𝐵(,)𝐷) ⊆ (𝐵[,]𝐷) | |
5 | 3, 4 | sstrdi 3192 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵[,]𝐷)) |
6 | sslin 3386 | . . . 4 ⊢ ((𝐶(,)𝐷) ⊆ (𝐵[,]𝐷) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷))) |
8 | simplll 533 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) | |
9 | simplrr 536 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐷 ∈ ℝ*) | |
10 | df-ioo 9961 | . . . . 5 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
11 | df-icc 9964 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
12 | xrlenlt 8086 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
13 | 10, 11, 12 | ixxdisj 9972 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅) |
14 | 8, 1, 9, 13 | syl3anc 1249 | . . 3 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅) |
15 | 7, 14 | sseqtrd 3218 | . 2 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅) |
16 | ss0 3488 | . 2 ⊢ (((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅ → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) | |
17 | 15, 16 | syl 14 | 1 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 class class class wbr 4030 (class class class)co 5919 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 (,)cioo 9957 [,]cicc 9960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-ioo 9961 df-icc 9964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |