ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioodisj GIF version

Theorem ioodisj 9806
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)

Proof of Theorem ioodisj
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 524 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐵 ∈ ℝ*)
2 iooss1 9729 . . . . . 6 ((𝐵 ∈ ℝ*𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
31, 2sylancom 417 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
4 ioossicc 9772 . . . . 5 (𝐵(,)𝐷) ⊆ (𝐵[,]𝐷)
53, 4sstrdi 3114 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵[,]𝐷))
6 sslin 3307 . . . 4 ((𝐶(,)𝐷) ⊆ (𝐵[,]𝐷) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
75, 6syl 14 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
8 simplll 523 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐴 ∈ ℝ*)
9 simplrr 526 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐷 ∈ ℝ*)
10 df-ioo 9705 . . . . 5 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
11 df-icc 9708 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
12 xrlenlt 7853 . . . . 5 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
1310, 11, 12ixxdisj 9716 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
148, 1, 9, 13syl3anc 1217 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
157, 14sseqtrd 3140 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅)
16 ss0 3408 . 2 (((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅ → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
1715, 16syl 14 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  cin 3075  wss 3076  c0 3368   class class class wbr 3937  (class class class)co 5782  *cxr 7823   < clt 7824  cle 7825  (,)cioo 9701  [,]cicc 9704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-ioo 9705  df-icc 9708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator