ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioodisj GIF version

Theorem ioodisj 10062
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
ioodisj ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)

Proof of Theorem ioodisj
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 534 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐵 ∈ ℝ*)
2 iooss1 9985 . . . . . 6 ((𝐵 ∈ ℝ*𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
31, 2sylancom 420 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷))
4 ioossicc 10028 . . . . 5 (𝐵(,)𝐷) ⊆ (𝐵[,]𝐷)
53, 4sstrdi 3192 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → (𝐶(,)𝐷) ⊆ (𝐵[,]𝐷))
6 sslin 3386 . . . 4 ((𝐶(,)𝐷) ⊆ (𝐵[,]𝐷) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
75, 6syl 14 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)))
8 simplll 533 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐴 ∈ ℝ*)
9 simplrr 536 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → 𝐷 ∈ ℝ*)
10 df-ioo 9961 . . . . 5 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
11 df-icc 9964 . . . . 5 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
12 xrlenlt 8086 . . . . 5 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
1310, 11, 12ixxdisj 9972 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
148, 1, 9, 13syl3anc 1249 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅)
157, 14sseqtrd 3218 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅)
16 ss0 3488 . 2 (((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅ → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
1715, 16syl 14 1 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cin 3153  wss 3154  c0 3447   class class class wbr 4030  (class class class)co 5919  *cxr 8055   < clt 8056  cle 8057  (,)cioo 9957  [,]cicc 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-ioo 9961  df-icc 9964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator