![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioodisj | GIF version |
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
ioodisj | ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 534 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐵 ∈ ℝ*) | |
2 | iooss1 9982 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷)) | |
3 | 1, 2 | sylancom 420 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵(,)𝐷)) |
4 | ioossicc 10025 | . . . . 5 ⊢ (𝐵(,)𝐷) ⊆ (𝐵[,]𝐷) | |
5 | 3, 4 | sstrdi 3191 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → (𝐶(,)𝐷) ⊆ (𝐵[,]𝐷)) |
6 | sslin 3385 | . . . 4 ⊢ ((𝐶(,)𝐷) ⊆ (𝐵[,]𝐷) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷))) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷))) |
8 | simplll 533 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐴 ∈ ℝ*) | |
9 | simplrr 536 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → 𝐷 ∈ ℝ*) | |
10 | df-ioo 9958 | . . . . 5 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
11 | df-icc 9961 | . . . . 5 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
12 | xrlenlt 8084 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
13 | 10, 11, 12 | ixxdisj 9969 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅) |
14 | 8, 1, 9, 13 | syl3anc 1249 | . . 3 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐵[,]𝐷)) = ∅) |
15 | 7, 14 | sseqtrd 3217 | . 2 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅) |
16 | ss0 3487 | . 2 ⊢ (((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) ⊆ ∅ → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) | |
17 | 15, 16 | syl 14 | 1 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) ∧ 𝐵 ≤ 𝐶) → ((𝐴(,)𝐵) ∩ (𝐶(,)𝐷)) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 class class class wbr 4029 (class class class)co 5918 ℝ*cxr 8053 < clt 8054 ≤ cle 8055 (,)cioo 9954 [,]cicc 9957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-ioo 9958 df-icc 9961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |