HomeHome Intuitionistic Logic Explorer
Theorem List (p. 99 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9801-9900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxrltled 9801 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9800. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremxrleid 9802 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
(𝐴 ∈ ℝ* β†’ 𝐴 ≀ 𝐴)
 
Theoremxrleidd 9803 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 9802. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐴)
 
Theoremxnn0dcle 9804 Decidability of ≀ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
((𝐴 ∈ β„•0* ∧ 𝐡 ∈ β„•0*) β†’ DECID 𝐴 ≀ 𝐡)
 
Theoremxnn0letri 9805 Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
((𝐴 ∈ β„•0* ∧ 𝐡 ∈ β„•0*) β†’ (𝐴 ≀ 𝐡 ∨ 𝐡 ≀ 𝐴))
 
Theoremxrletri3 9806 Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 = 𝐡 ↔ (𝐴 ≀ 𝐡 ∧ 𝐡 ≀ 𝐴)))
 
Theoremxrletrid 9807 Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ 𝐡 ≀ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremxrlelttr 9808 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) β†’ ((𝐴 ≀ 𝐡 ∧ 𝐡 < 𝐢) β†’ 𝐴 < 𝐢))
 
Theoremxrltletr 9809 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) β†’ ((𝐴 < 𝐡 ∧ 𝐡 ≀ 𝐢) β†’ 𝐴 < 𝐢))
 
Theoremxrletr 9810 Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) β†’ ((𝐴 ≀ 𝐡 ∧ 𝐡 ≀ 𝐢) β†’ 𝐴 ≀ 𝐢))
 
Theoremxrlttrd 9811 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐡 < 𝐢)    β‡’   (πœ‘ β†’ 𝐴 < 𝐢)
 
Theoremxrlelttrd 9812 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ 𝐡 < 𝐢)    β‡’   (πœ‘ β†’ 𝐴 < 𝐢)
 
Theoremxrltletrd 9813 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐡 ≀ 𝐢)    β‡’   (πœ‘ β†’ 𝐴 < 𝐢)
 
Theoremxrletrd 9814 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ 𝐡 ≀ 𝐢)    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐢)
 
Theoremxrltne 9815 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 < 𝐡) β†’ 𝐡 β‰  𝐴)
 
Theoremnltpnft 9816 An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
(𝐴 ∈ ℝ* β†’ (𝐴 = +∞ ↔ Β¬ 𝐴 < +∞))
 
Theoremnpnflt 9817 An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* β†’ (𝐴 < +∞ ↔ 𝐴 β‰  +∞))
 
Theoremxgepnf 9818 An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
(𝐴 ∈ ℝ* β†’ (+∞ ≀ 𝐴 ↔ 𝐴 = +∞))
 
Theoremngtmnft 9819 An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
(𝐴 ∈ ℝ* β†’ (𝐴 = -∞ ↔ Β¬ -∞ < 𝐴))
 
Theoremnmnfgt 9820 An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
(𝐴 ∈ ℝ* β†’ (-∞ < 𝐴 ↔ 𝐴 β‰  -∞))
 
Theoremxrrebnd 9821 An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
(𝐴 ∈ ℝ* β†’ (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞)))
 
Theoremxrre 9822 A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≀ 𝐡)) β†’ 𝐴 ∈ ℝ)
 
Theoremxrre2 9823 An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (𝐴 < 𝐡 ∧ 𝐡 < 𝐢)) β†’ 𝐡 ∈ ℝ)
 
Theoremxrre3 9824 A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) ∧ (𝐡 ≀ 𝐴 ∧ 𝐴 < +∞)) β†’ 𝐴 ∈ ℝ)
 
Theoremge0gtmnf 9825 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 0 ≀ 𝐴) β†’ -∞ < 𝐴)
 
Theoremge0nemnf 9826 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 0 ≀ 𝐴) β†’ 𝐴 β‰  -∞)
 
Theoremxrrege0 9827 A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) ∧ (0 ≀ 𝐴 ∧ 𝐴 ≀ 𝐡)) β†’ 𝐴 ∈ ℝ)
 
Theoremz2ge 9828* There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ βˆƒπ‘˜ ∈ β„€ (𝑀 ≀ π‘˜ ∧ 𝑁 ≀ π‘˜))
 
Theoremxnegeq 9829 Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
(𝐴 = 𝐡 β†’ -𝑒𝐴 = -𝑒𝐡)
 
Theoremxnegpnf 9830 Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
-𝑒+∞ = -∞
 
Theoremxnegmnf 9831 Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
-𝑒-∞ = +∞
 
Theoremrexneg 9832 Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ β†’ -𝑒𝐴 = -𝐴)
 
Theoremxneg0 9833 The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.)
-𝑒0 = 0
 
Theoremxnegcl 9834 Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ -𝑒𝐴 ∈ ℝ*)
 
Theoremxnegneg 9835 Extended real version of negneg 8209. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ -𝑒-𝑒𝐴 = 𝐴)
 
Theoremxneg11 9836 Extended real version of neg11 8210. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (-𝑒𝐴 = -𝑒𝐡 ↔ 𝐴 = 𝐡))
 
Theoremxltnegi 9837 Forward direction of xltneg 9838. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐴 < 𝐡) β†’ -𝑒𝐡 < -𝑒𝐴)
 
Theoremxltneg 9838 Extended real version of ltneg 8421. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 < 𝐡 ↔ -𝑒𝐡 < -𝑒𝐴))
 
Theoremxleneg 9839 Extended real version of leneg 8424. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 ≀ 𝐡 ↔ -𝑒𝐡 ≀ -𝑒𝐴))
 
Theoremxlt0neg1 9840 Extended real version of lt0neg1 8427. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ (𝐴 < 0 ↔ 0 < -𝑒𝐴))
 
Theoremxlt0neg2 9841 Extended real version of lt0neg2 8428. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ (0 < 𝐴 ↔ -𝑒𝐴 < 0))
 
Theoremxle0neg1 9842 Extended real version of le0neg1 8429. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* β†’ (𝐴 ≀ 0 ↔ 0 ≀ -𝑒𝐴))
 
Theoremxle0neg2 9843 Extended real version of le0neg2 8430. (Contributed by Mario Carneiro, 9-Sep-2015.)
(𝐴 ∈ ℝ* β†’ (0 ≀ 𝐴 ↔ -𝑒𝐴 ≀ 0))
 
Theoremxrpnfdc 9844 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ* β†’ DECID 𝐴 = +∞)
 
Theoremxrmnfdc 9845 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
(𝐴 ∈ ℝ* β†’ DECID 𝐴 = -∞)
 
Theoremxaddf 9846 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
+𝑒 :(ℝ* Γ— ℝ*)βŸΆβ„*
 
Theoremxaddval 9847 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 +𝑒 𝐡) = if(𝐴 = +∞, if(𝐡 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐡 = +∞, 0, -∞), if(𝐡 = +∞, +∞, if(𝐡 = -∞, -∞, (𝐴 + 𝐡))))))
 
Theoremxaddpnf1 9848 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞) β†’ (𝐴 +𝑒 +∞) = +∞)
 
Theoremxaddpnf2 9849 Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞) β†’ (+∞ +𝑒 𝐴) = +∞)
 
Theoremxaddmnf1 9850 Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐴 β‰  +∞) β†’ (𝐴 +𝑒 -∞) = -∞)
 
Theoremxaddmnf2 9851 Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐴 β‰  +∞) β†’ (-∞ +𝑒 𝐴) = -∞)
 
Theorempnfaddmnf 9852 Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(+∞ +𝑒 -∞) = 0
 
Theoremmnfaddpnf 9853 Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
(-∞ +𝑒 +∞) = 0
 
Theoremrexadd 9854 The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 +𝑒 𝐡) = (𝐴 + 𝐡))
 
Theoremrexsub 9855 Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 +𝑒 -𝑒𝐡) = (𝐴 βˆ’ 𝐡))
 
Theoremrexaddd 9856 The extended real addition operation when both arguments are real. Deduction version of rexadd 9854. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐡) = (𝐴 + 𝐡))
 
Theoremxnegcld 9857 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    β‡’   (πœ‘ β†’ -𝑒𝐴 ∈ ℝ*)
 
Theoremxrex 9858 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
ℝ* ∈ V
 
Theoremxaddnemnf 9859 Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞) ∧ (𝐡 ∈ ℝ* ∧ 𝐡 β‰  -∞)) β†’ (𝐴 +𝑒 𝐡) β‰  -∞)
 
Theoremxaddnepnf 9860 Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐴 β‰  +∞) ∧ (𝐡 ∈ ℝ* ∧ 𝐡 β‰  +∞)) β†’ (𝐴 +𝑒 𝐡) β‰  +∞)
 
Theoremxnegid 9861 Extended real version of negid 8206. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ (𝐴 +𝑒 -𝑒𝐴) = 0)
 
Theoremxaddcl 9862 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 +𝑒 𝐡) ∈ ℝ*)
 
Theoremxaddcom 9863 The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 +𝑒 𝐡) = (𝐡 +𝑒 𝐴))
 
Theoremxaddid1 9864 Extended real version of addid1 8097. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ (𝐴 +𝑒 0) = 𝐴)
 
Theoremxaddid2 9865 Extended real version of addlid 8098. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐴 ∈ ℝ* β†’ (0 +𝑒 𝐴) = 𝐴)
 
Theoremxaddid1d 9866 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 0) = 𝐴)
 
Theoremxnn0lenn0nn0 9867 An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
((𝑀 ∈ β„•0* ∧ 𝑁 ∈ β„•0 ∧ 𝑀 ≀ 𝑁) β†’ 𝑀 ∈ β„•0)
 
Theoremxnn0le2is012 9868 An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.)
((𝑁 ∈ β„•0* ∧ 𝑁 ≀ 2) β†’ (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
 
Theoremxnn0xadd0 9869 The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
((𝐴 ∈ β„•0* ∧ 𝐡 ∈ β„•0*) β†’ ((𝐴 +𝑒 𝐡) = 0 ↔ (𝐴 = 0 ∧ 𝐡 = 0)))
 
Theoremxnegdi 9870 Extended real version of negdi 8216. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ -𝑒(𝐴 +𝑒 𝐡) = (-𝑒𝐴 +𝑒 -𝑒𝐡))
 
Theoremxaddass 9871 Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐡, 𝐢, i.e. Β¬ {+∞, -∞} βŠ† {𝐴, 𝐡, 𝐢}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐡, 𝐢, and xaddass2 9872, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞) ∧ (𝐡 ∈ ℝ* ∧ 𝐡 β‰  -∞) ∧ (𝐢 ∈ ℝ* ∧ 𝐢 β‰  -∞)) β†’ ((𝐴 +𝑒 𝐡) +𝑒 𝐢) = (𝐴 +𝑒 (𝐡 +𝑒 𝐢)))
 
Theoremxaddass2 9872 Associativity of extended real addition. See xaddass 9871 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐴 β‰  +∞) ∧ (𝐡 ∈ ℝ* ∧ 𝐡 β‰  +∞) ∧ (𝐢 ∈ ℝ* ∧ 𝐢 β‰  +∞)) β†’ ((𝐴 +𝑒 𝐡) +𝑒 𝐢) = (𝐴 +𝑒 (𝐡 +𝑒 𝐢)))
 
Theoremxpncan 9873 Extended real version of pncan 8165. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) β†’ ((𝐴 +𝑒 𝐡) +𝑒 -𝑒𝐡) = 𝐴)
 
Theoremxnpcan 9874 Extended real version of npcan 8168. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) β†’ ((𝐴 +𝑒 -𝑒𝐡) +𝑒 𝐡) = 𝐴)
 
Theoremxleadd1a 9875 Extended real version of leadd1 8389; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≀ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ 𝐴 ≀ 𝐡) β†’ (𝐴 +𝑒 𝐢) ≀ (𝐡 +𝑒 𝐢))
 
Theoremxleadd2a 9876 Commuted form of xleadd1a 9875. (Contributed by Mario Carneiro, 20-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ 𝐴 ≀ 𝐡) β†’ (𝐢 +𝑒 𝐴) ≀ (𝐢 +𝑒 𝐡))
 
Theoremxleadd1 9877 Weakened version of xleadd1a 9875 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ) β†’ (𝐴 ≀ 𝐡 ↔ (𝐴 +𝑒 𝐢) ≀ (𝐡 +𝑒 𝐢)))
 
Theoremxltadd1 9878 Extended real version of ltadd1 8388. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ) β†’ (𝐴 < 𝐡 ↔ (𝐴 +𝑒 𝐢) < (𝐡 +𝑒 𝐢)))
 
Theoremxltadd2 9879 Extended real version of ltadd2 8378. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ) β†’ (𝐴 < 𝐡 ↔ (𝐢 +𝑒 𝐴) < (𝐢 +𝑒 𝐡)))
 
Theoremxaddge0 9880 The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) ∧ (0 ≀ 𝐴 ∧ 0 ≀ 𝐡)) β†’ 0 ≀ (𝐴 +𝑒 𝐡))
 
Theoremxle2add 9881 Extended real version of le2add 8403. (Contributed by Mario Carneiro, 23-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) ∧ (𝐢 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) β†’ ((𝐴 ≀ 𝐢 ∧ 𝐡 ≀ 𝐷) β†’ (𝐴 +𝑒 𝐡) ≀ (𝐢 +𝑒 𝐷)))
 
Theoremxlt2add 9882 Extended real version of lt2add 8404. Note that ltleadd 8405, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) ∧ (𝐢 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) β†’ ((𝐴 < 𝐢 ∧ 𝐡 < 𝐷) β†’ (𝐴 +𝑒 𝐡) < (𝐢 +𝑒 𝐷)))
 
Theoremxsubge0 9883 Extended real version of subge0 8434. (Contributed by Mario Carneiro, 24-Aug-2015.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (0 ≀ (𝐴 +𝑒 -𝑒𝐡) ↔ 𝐡 ≀ 𝐴))
 
Theoremxposdif 9884 Extended real version of posdif 8414. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 < 𝐡 ↔ 0 < (𝐡 +𝑒 -𝑒𝐴)))
 
Theoremxlesubadd 9885 Under certain conditions, the conclusion of lesubadd 8393 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (0 ≀ 𝐴 ∧ 𝐡 β‰  -∞ ∧ 0 ≀ 𝐢)) β†’ ((𝐴 +𝑒 -𝑒𝐡) ≀ 𝐢 ↔ 𝐴 ≀ (𝐢 +𝑒 𝐡)))
 
Theoremxaddcld 9886 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐡) ∈ ℝ*)
 
Theoremxadd4d 9887 Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8128. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
(πœ‘ β†’ (𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞))    &   (πœ‘ β†’ (𝐡 ∈ ℝ* ∧ 𝐡 β‰  -∞))    &   (πœ‘ β†’ (𝐢 ∈ ℝ* ∧ 𝐢 β‰  -∞))    &   (πœ‘ β†’ (𝐷 ∈ ℝ* ∧ 𝐷 β‰  -∞))    β‡’   (πœ‘ β†’ ((𝐴 +𝑒 𝐡) +𝑒 (𝐢 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐢) +𝑒 (𝐡 +𝑒 𝐷)))
 
Theoremxnn0add4d 9888 Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9887. (Contributed by AV, 12-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ β„•0*)    &   (πœ‘ β†’ 𝐡 ∈ β„•0*)    &   (πœ‘ β†’ 𝐢 ∈ β„•0*)    &   (πœ‘ β†’ 𝐷 ∈ β„•0*)    β‡’   (πœ‘ β†’ ((𝐴 +𝑒 𝐡) +𝑒 (𝐢 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐢) +𝑒 (𝐡 +𝑒 𝐷)))
 
Theoremxleaddadd 9889 Cancelling a factor of two in ≀ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴 ≀ 𝐡 ↔ (𝐴 +𝑒 𝐴) ≀ (𝐡 +𝑒 𝐡)))
 
4.5.3  Real number intervals
 
Syntaxcioo 9890 Extend class notation with the set of open intervals of extended reals.
class (,)
 
Syntaxcioc 9891 Extend class notation with the set of open-below, closed-above intervals of extended reals.
class (,]
 
Syntaxcico 9892 Extend class notation with the set of closed-below, open-above intervals of extended reals.
class [,)
 
Syntaxcicc 9893 Extend class notation with the set of closed intervals of extended reals.
class [,]
 
Definitiondf-ioo 9894* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 < 𝑦)})
 
Definitiondf-ioc 9895* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
(,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ < 𝑧 ∧ 𝑧 ≀ 𝑦)})
 
Definitiondf-ico 9896* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,) = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 < 𝑦)})
 
Definitiondf-icc 9897* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
[,] = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯ ≀ 𝑧 ∧ 𝑧 ≀ 𝑦)})
 
Theoremixxval 9898* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯𝑅𝑧 ∧ 𝑧𝑆𝑦)})    β‡’   ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐴𝑂𝐡) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐡)})
 
Theoremelixx1 9899* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
𝑂 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯𝑅𝑧 ∧ 𝑧𝑆𝑦)})    β‡’   ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (𝐢 ∈ (𝐴𝑂𝐡) ↔ (𝐢 ∈ ℝ* ∧ 𝐴𝑅𝐢 ∧ 𝐢𝑆𝐡)))
 
Theoremixxf 9900* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
𝑂 = (π‘₯ ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (π‘₯𝑅𝑧 ∧ 𝑧𝑆𝑦)})    β‡’   π‘‚:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >