Theorem List for Intuitionistic Logic Explorer - 9801-9900   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ledivge1le 9801 | 
If a number is less than or equal to another number, the number divided by
     a positive number greater than or equal to one is less than or equal to
     the other number.  (Contributed by AV, 29-Jun-2021.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+
 ∧ 1 ≤ 𝐶)) →
 (𝐴 ≤ 𝐵 → (𝐴 / 𝐶) ≤ 𝐵)) | 
|   | 
| Theorem | ge0p1rpd 9802 | 
A nonnegative number plus one is a positive number.  (Contributed by
         Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)    ⇒   ⊢ (𝜑 → (𝐴 + 1) ∈
 ℝ+) | 
|   | 
| Theorem | rerpdivcld 9803 | 
Closure law for division of a real by a positive real.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | 
|   | 
| Theorem | ltsubrpd 9804 | 
Subtracting a positive real from another number decreases it.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 − 𝐵) < 𝐴) | 
|   | 
| Theorem | ltaddrpd 9805 | 
Adding a positive number to another number increases it.  (Contributed
       by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) | 
|   | 
| Theorem | ltaddrp2d 9806 | 
Adding a positive number to another number increases it.  (Contributed
       by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐴)) | 
|   | 
| Theorem | ltmulgt11d 9807 | 
Multiplication by a number greater than 1.  (Contributed by Mario
       Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | 
|   | 
| Theorem | ltmulgt12d 9808 | 
Multiplication by a number greater than 1.  (Contributed by Mario
       Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐴 · 𝐵))) | 
|   | 
| Theorem | gt0divd 9809 | 
Division of a positive number by a positive number.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵))) | 
|   | 
| Theorem | ge0divd 9810 | 
Division of a nonnegative number by a positive number.  (Contributed by
       Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | 
|   | 
| Theorem | rpgecld 9811 | 
A number greater or equal to a positive real is positive real.
         (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐵 ≤ 𝐴)    ⇒   ⊢ (𝜑 → 𝐴 ∈
 ℝ+) | 
|   | 
| Theorem | divge0d 9812 | 
The ratio of nonnegative and positive numbers is nonnegative.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ+)    &   ⊢ (𝜑 → 0 ≤ 𝐴)    ⇒   ⊢ (𝜑 → 0 ≤ (𝐴 / 𝐵)) | 
|   | 
| Theorem | ltmul1d 9813 | 
The ratio of nonnegative and positive numbers is nonnegative.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | 
|   | 
| Theorem | ltmul2d 9814 | 
Multiplication of both sides of 'less than' by a positive number.
       Theorem I.19 of [Apostol] p. 20. 
(Contributed by Mario Carneiro,
       28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵))) | 
|   | 
| Theorem | lemul1d 9815 | 
Multiplication of both sides of 'less than or equal to' by a positive
       number.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | 
|   | 
| Theorem | lemul2d 9816 | 
Multiplication of both sides of 'less than or equal to' by a positive
       number.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))) | 
|   | 
| Theorem | ltdiv1d 9817 | 
Division of both sides of 'less than' by a positive number.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶))) | 
|   | 
| Theorem | lediv1d 9818 | 
Division of both sides of a less than or equal to relation by a positive
       number.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶))) | 
|   | 
| Theorem | ltmuldivd 9819 | 
'Less than' relationship between division and multiplication.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | 
|   | 
| Theorem | ltmuldiv2d 9820 | 
'Less than' relationship between division and multiplication.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐶 · 𝐴) < 𝐵 ↔ 𝐴 < (𝐵 / 𝐶))) | 
|   | 
| Theorem | lemuldivd 9821 | 
'Less than or equal to' relationship between division and
       multiplication.  (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) | 
|   | 
| Theorem | lemuldiv2d 9822 | 
'Less than or equal to' relationship between division and
       multiplication.  (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐶 · 𝐴) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 / 𝐶))) | 
|   | 
| Theorem | ltdivmuld 9823 | 
'Less than' relationship between division and multiplication.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) | 
|   | 
| Theorem | ltdivmul2d 9824 | 
'Less than' relationship between division and multiplication.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐵 · 𝐶))) | 
|   | 
| Theorem | ledivmuld 9825 | 
'Less than or equal to' relationship between division and
       multiplication.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐶 · 𝐵))) | 
|   | 
| Theorem | ledivmul2d 9826 | 
'Less than or equal to' relationship between division and
       multiplication.  (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 / 𝐶) ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 · 𝐶))) | 
|   | 
| Theorem | ltmul1dd 9827 | 
The ratio of nonnegative and positive numbers is nonnegative.
         (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | 
|   | 
| Theorem | ltmul2dd 9828 | 
Multiplication of both sides of 'less than' by a positive number.
         Theorem I.19 of [Apostol] p. 20. 
(Contributed by Mario Carneiro,
         30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐶 · 𝐴) < (𝐶 · 𝐵)) | 
|   | 
| Theorem | ltdiv1dd 9829 | 
Division of both sides of 'less than' by a positive number.
         (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐶) < (𝐵 / 𝐶)) | 
|   | 
| Theorem | lediv1dd 9830 | 
Division of both sides of a less than or equal to relation by a
         positive number.  (Contributed by Mario Carneiro, 30-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)) | 
|   | 
| Theorem | lediv12ad 9831 | 
Comparison of ratio of two nonnegative numbers.  (Contributed by Mario
         Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐷 ∈ ℝ)    &   ⊢ (𝜑 → 0 ≤ 𝐴)   
 &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)   
 &   ⊢ (𝜑 → 𝐶 ≤ 𝐷)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | 
|   | 
| Theorem | ltdiv23d 9832 | 
Swap denominator with other side of 'less than'.  (Contributed by
         Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → (𝐴 / 𝐵) < 𝐶)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐶) < 𝐵) | 
|   | 
| Theorem | lediv23d 9833 | 
Swap denominator with other side of 'less than or equal to'.
         (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ+)    &   ⊢ (𝜑 → (𝐴 / 𝐵) ≤ 𝐶)    ⇒   ⊢ (𝜑 → (𝐴 / 𝐶) ≤ 𝐵) | 
|   | 
| Theorem | mul2lt0rlt0 9834 | 
If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux,
         19-Sep-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 · 𝐵) < 0)    ⇒   ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) | 
|   | 
| Theorem | mul2lt0rgt0 9835 | 
If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux,
         19-Sep-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 · 𝐵) < 0)    ⇒   ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) | 
|   | 
| Theorem | mul2lt0llt0 9836 | 
If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux,
         19-Sep-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 · 𝐵) < 0)    ⇒   ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < 𝐵) | 
|   | 
| Theorem | mul2lt0lgt0 9837 | 
If the result of a multiplication is strictly negative, then
         multiplicands are of different signs.  (Contributed by Thierry Arnoux,
         2-Oct-2018.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → (𝐴 · 𝐵) < 0)    ⇒   ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) | 
|   | 
| Theorem | mul2lt0np 9838 | 
The product of multiplicands of different signs is negative.
         (Contributed by Jim Kingdon, 25-Feb-2024.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 0)    &   ⊢ (𝜑 → 0 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | 
|   | 
| Theorem | mul2lt0pn 9839 | 
The product of multiplicands of different signs is negative.
         (Contributed by Jim Kingdon, 25-Feb-2024.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ)    &   ⊢ (𝜑 → 𝐴 < 0)    &   ⊢ (𝜑 → 0 < 𝐵)    ⇒   ⊢ (𝜑 → (𝐵 · 𝐴) < 0) | 
|   | 
| Theorem | lt2mul2divd 9840 | 
The ratio of nonnegative and positive numbers is nonnegative.
       (Contributed by Mario Carneiro, 28-May-2016.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ+)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ)    &   ⊢ (𝜑 → 𝐷 ∈
 ℝ+)    ⇒   ⊢ (𝜑 → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) | 
|   | 
| Theorem | nnledivrp 9841 | 
Division of a positive integer by a positive number is less than or equal
     to the integer iff the number is greater than or equal to 1.  (Contributed
     by AV, 19-Jun-2021.)
 | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤
 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | 
|   | 
| Theorem | nn0ledivnn 9842 | 
Division of a nonnegative integer by a positive integer is less than or
     equal to the integer.  (Contributed by AV, 19-Jun-2021.)
 | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) | 
|   | 
| Theorem | addlelt 9843 | 
If the sum of a real number and a positive real number is less than or
     equal to a third real number, the first real number is less than the third
     real number.  (Contributed by AV, 1-Jul-2021.)
 | 
| ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | 
|   | 
| 4.5.2  Infinity and the extended real number
 system (cont.)
 | 
|   | 
| Syntax | cxne 9844 | 
Extend class notation to include the negative of an extended real.
 | 
| class -𝑒𝐴 | 
|   | 
| Syntax | cxad 9845 | 
Extend class notation to include addition of extended reals.
 | 
| class  +𝑒 | 
|   | 
| Syntax | cxmu 9846 | 
Extend class notation to include multiplication of extended reals.
 | 
| class  ·e | 
|   | 
| Definition | df-xneg 9847 | 
Define the negative of an extended real number.  (Contributed by FL,
     26-Dec-2011.)
 | 
| ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | 
|   | 
| Definition | df-xadd 9848* | 
Define addition over extended real numbers.  (Contributed by Mario
       Carneiro, 20-Aug-2015.)
 | 
| ⊢  +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ if(𝑥 = +∞,
 if(𝑦 = -∞, 0,
 +∞), if(𝑥 =
 -∞, if(𝑦 = +∞,
 0, -∞), if(𝑦 =
 +∞, +∞, if(𝑦 =
 -∞, -∞, (𝑥 +
 𝑦)))))) | 
|   | 
| Definition | df-xmul 9849* | 
Define multiplication over extended real numbers.  (Contributed by Mario
       Carneiro, 20-Aug-2015.)
 | 
| ⊢  ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
 ↦ if((𝑥 = 0 ∨
 𝑦 = 0), 0, if((((0 <
 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) | 
|   | 
| Theorem | ltxr 9850 | 
The 'less than' binary relation on the set of extended reals.
       Definition 12-3.1 of [Gleason] p. 173. 
(Contributed by NM,
       14-Oct-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 <ℝ 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))) | 
|   | 
| Theorem | elxr 9851 | 
Membership in the set of extended reals.  (Contributed by NM,
     14-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
|   | 
| Theorem | xrnemnf 9852 | 
An extended real other than minus infinity is real or positive infinite.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | 
|   | 
| Theorem | xrnepnf 9853 | 
An extended real other than plus infinity is real or negative infinite.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | 
|   | 
| Theorem | xrltnr 9854 | 
The extended real 'less than' is irreflexive.  (Contributed by NM,
     14-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ* → ¬
 𝐴 < 𝐴) | 
|   | 
| Theorem | ltpnf 9855 | 
Any (finite) real is less than plus infinity.  (Contributed by NM,
     14-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | 
|   | 
| Theorem | ltpnfd 9856 | 
Any (finite) real is less than plus infinity.  (Contributed by Glauco
       Siliprandi, 11-Dec-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ)   
 ⇒   ⊢ (𝜑 → 𝐴 < +∞) | 
|   | 
| Theorem | 0ltpnf 9857 | 
Zero is less than plus infinity (common case).  (Contributed by David A.
     Wheeler, 8-Dec-2018.)
 | 
| ⊢ 0 < +∞ | 
|   | 
| Theorem | mnflt 9858 | 
Minus infinity is less than any (finite) real.  (Contributed by NM,
     14-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | 
|   | 
| Theorem | mnflt0 9859 | 
Minus infinity is less than 0 (common case).  (Contributed by David A.
     Wheeler, 8-Dec-2018.)
 | 
| ⊢ -∞ < 0 | 
|   | 
| Theorem | mnfltpnf 9860 | 
Minus infinity is less than plus infinity.  (Contributed by NM,
     14-Oct-2005.)
 | 
| ⊢ -∞ < +∞ | 
|   | 
| Theorem | mnfltxr 9861 | 
Minus infinity is less than an extended real that is either real or plus
     infinity.  (Contributed by NM, 2-Feb-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) | 
|   | 
| Theorem | pnfnlt 9862 | 
No extended real is greater than plus infinity.  (Contributed by NM,
     15-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ* → ¬
 +∞ < 𝐴) | 
|   | 
| Theorem | nltmnf 9863 | 
No extended real is less than minus infinity.  (Contributed by NM,
     15-Oct-2005.)
 | 
| ⊢ (𝐴 ∈ ℝ* → ¬
 𝐴 <
 -∞) | 
|   | 
| Theorem | pnfge 9864 | 
Plus infinity is an upper bound for extended reals.  (Contributed by NM,
     30-Jan-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤
 +∞) | 
|   | 
| Theorem | 0lepnf 9865 | 
0 less than or equal to positive infinity.  (Contributed by David A.
     Wheeler, 8-Dec-2018.)
 | 
| ⊢ 0 ≤ +∞ | 
|   | 
| Theorem | nn0pnfge0 9866 | 
If a number is a nonnegative integer or positive infinity, it is greater
     than or equal to 0.  (Contributed by Alexander van der Vekens,
     6-Jan-2018.)
 | 
| ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → 0 ≤
 𝑁) | 
|   | 
| Theorem | mnfle 9867 | 
Minus infinity is less than or equal to any extended real.  (Contributed
     by NM, 19-Jan-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ* → -∞
 ≤ 𝐴) | 
|   | 
| Theorem | xrltnsym 9868 | 
Ordering on the extended reals is not symmetric.  (Contributed by NM,
     15-Oct-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
|   | 
| Theorem | xrltnsym2 9869 | 
'Less than' is antisymmetric and irreflexive for extended reals.
     (Contributed by NM, 6-Feb-2007.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | 
|   | 
| Theorem | xrlttr 9870 | 
Ordering on the extended reals is transitive.  (Contributed by NM,
     15-Oct-2005.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | 
|   | 
| Theorem | xrltso 9871 | 
'Less than' is a weakly linear ordering on the extended reals.
       (Contributed by NM, 15-Oct-2005.)
 | 
| ⊢  < Or
 ℝ* | 
|   | 
| Theorem | xrlttri3 9872 | 
Extended real version of lttri3 8106.  (Contributed by NM, 9-Feb-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | 
|   | 
| Theorem | xrltle 9873 | 
'Less than' implies 'less than or equal' for extended reals.  (Contributed
     by NM, 19-Jan-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | 
|   | 
| Theorem | xrltled 9874 | 
'Less than' implies 'less than or equal to' for extended reals.
       Deduction form of xrltle 9873.  (Contributed by Glauco Siliprandi,
       11-Dec-2019.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 < 𝐵)    ⇒   ⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
|   | 
| Theorem | xrleid 9875 | 
'Less than or equal to' is reflexive for extended reals.  (Contributed by
     NM, 7-Feb-2007.)
 | 
| ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | 
|   | 
| Theorem | xrleidd 9876 | 
'Less than or equal to' is reflexive for extended reals.  Deduction form
       of xrleid 9875.  (Contributed by Glauco Siliprandi,
26-Jun-2021.)
 | 
| ⊢ (𝜑 → 𝐴 ∈
 ℝ*)    ⇒   ⊢ (𝜑 → 𝐴 ≤ 𝐴) | 
|   | 
| Theorem | xnn0dcle 9877 | 
Decidability of ≤ for extended nonnegative integers.
(Contributed by
     Jim Kingdon, 13-Oct-2024.)
 | 
| ⊢ ((𝐴 ∈ ℕ0*
 ∧ 𝐵 ∈
 ℕ0*) → DECID 𝐴 ≤ 𝐵) | 
|   | 
| Theorem | xnn0letri 9878 | 
Dichotomy for extended nonnegative integers.  (Contributed by Jim Kingdon,
     13-Oct-2024.)
 | 
| ⊢ ((𝐴 ∈ ℕ0*
 ∧ 𝐵 ∈
 ℕ0*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | 
|   | 
| Theorem | xrletri3 9879 | 
Trichotomy law for extended reals.  (Contributed by FL, 2-Aug-2009.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | 
|   | 
| Theorem | xrletrid 9880 | 
Trichotomy law for extended reals.  (Contributed by Glauco Siliprandi,
       17-Aug-2020.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐴)    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | xrlelttr 9881 | 
Transitive law for ordering on extended reals.  (Contributed by NM,
     19-Jan-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | 
|   | 
| Theorem | xrltletr 9882 | 
Transitive law for ordering on extended reals.  (Contributed by NM,
     19-Jan-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | 
|   | 
| Theorem | xrletr 9883 | 
Transitive law for ordering on extended reals.  (Contributed by NM,
     9-Feb-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | 
|   | 
| Theorem | xrlttrd 9884 | 
Transitive law for ordering on extended reals.  (Contributed by Mario
         Carneiro, 23-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 < 𝐵)   
 &   ⊢ (𝜑 → 𝐵 < 𝐶)    ⇒   ⊢ (𝜑 → 𝐴 < 𝐶) | 
|   | 
| Theorem | xrlelttrd 9885 | 
Transitive law for ordering on extended reals.  (Contributed by Mario
         Carneiro, 23-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)   
 &   ⊢ (𝜑 → 𝐵 < 𝐶)    ⇒   ⊢ (𝜑 → 𝐴 < 𝐶) | 
|   | 
| Theorem | xrltletrd 9886 | 
Transitive law for ordering on extended reals.  (Contributed by Mario
         Carneiro, 23-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 < 𝐵)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐶)    ⇒   ⊢ (𝜑 → 𝐴 < 𝐶) | 
|   | 
| Theorem | xrletrd 9887 | 
Transitive law for ordering on extended reals.  (Contributed by Mario
         Carneiro, 23-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐵 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐶 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐴 ≤ 𝐵)   
 &   ⊢ (𝜑 → 𝐵 ≤ 𝐶)    ⇒   ⊢ (𝜑 → 𝐴 ≤ 𝐶) | 
|   | 
| Theorem | xrltne 9888 | 
'Less than' implies not equal for extended reals.  (Contributed by NM,
     20-Jan-2006.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | 
|   | 
| Theorem | nltpnft 9889 | 
An extended real is not less than plus infinity iff they are equal.
     (Contributed by NM, 30-Jan-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 <
 +∞)) | 
|   | 
| Theorem | npnflt 9890 | 
An extended real is less than plus infinity iff they are not equal.
     (Contributed by Jim Kingdon, 17-Apr-2023.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠
 +∞)) | 
|   | 
| Theorem | xgepnf 9891 | 
An extended real which is greater than plus infinity is plus infinity.
     (Contributed by Thierry Arnoux, 18-Dec-2016.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 (+∞ ≤ 𝐴 ↔
 𝐴 =
 +∞)) | 
|   | 
| Theorem | ngtmnft 9892 | 
An extended real is not greater than minus infinity iff they are equal.
     (Contributed by NM, 2-Feb-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬
 -∞ < 𝐴)) | 
|   | 
| Theorem | nmnfgt 9893 | 
An extended real is greater than minus infinite iff they are not equal.
     (Contributed by Jim Kingdon, 17-Apr-2023.)
 | 
| ⊢ (𝐴 ∈ ℝ* →
 (-∞ < 𝐴 ↔
 𝐴 ≠
 -∞)) | 
|   | 
| Theorem | xrrebnd 9894 | 
An extended real is real iff it is strictly bounded by infinities.
     (Contributed by NM, 2-Feb-2006.)
 | 
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔
 (-∞ < 𝐴 ∧
 𝐴 <
 +∞))) | 
|   | 
| Theorem | xrre 9895 | 
A way of proving that an extended real is real.  (Contributed by NM,
     9-Mar-2006.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧
 (-∞ < 𝐴 ∧
 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | 
|   | 
| Theorem | xrre2 9896 | 
An extended real between two others is real.  (Contributed by NM,
     6-Feb-2007.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
 ∧ 𝐶 ∈
 ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | 
|   | 
| Theorem | xrre3 9897 | 
A way of proving that an extended real is real.  (Contributed by FL,
     29-May-2014.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | 
|   | 
| Theorem | ge0gtmnf 9898 | 
A nonnegative extended real is greater than negative infinity.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤
 𝐴) → -∞ <
 𝐴) | 
|   | 
| Theorem | ge0nemnf 9899 | 
A nonnegative extended real is greater than negative infinity.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤
 𝐴) → 𝐴 ≠
 -∞) | 
|   | 
| Theorem | xrrege0 9900 | 
A nonnegative extended real that is less than a real bound is real.
     (Contributed by Mario Carneiro, 20-Aug-2015.)
 | 
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) |