Step | Hyp | Ref
| Expression |
1 | | enrex 7699 |
. 2
⊢
~R ∈ V |
2 | | enrer 7697 |
. 2
⊢
~R Er (P ×
P) |
3 | | df-nr 7689 |
. 2
⊢
R = ((P × P) /
~R ) |
4 | | df-ltr 7692 |
. 2
⊢
<R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
5 | | enreceq 7698 |
. . . . 5
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) → ([〈𝑧, 𝑤〉] ~R =
[〈𝐴, 𝐵〉] ~R ↔
(𝑧
+P 𝐵) = (𝑤 +P 𝐴))) |
6 | | enreceq 7698 |
. . . . . 6
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ([〈𝑣, 𝑢〉] ~R =
[〈𝐶, 𝐷〉] ~R ↔
(𝑣
+P 𝐷) = (𝑢 +P 𝐶))) |
7 | | eqcom 2172 |
. . . . . 6
⊢ ((𝑣 +P
𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) |
8 | 6, 7 | bitrdi 195 |
. . . . 5
⊢ (((𝑣 ∈ P ∧
𝑢 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ([〈𝑣, 𝑢〉] ~R =
[〈𝐶, 𝐷〉] ~R ↔
(𝑢
+P 𝐶) = (𝑣 +P 𝐷))) |
9 | 5, 8 | bi2anan9 601 |
. . . 4
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (([〈𝑧, 𝑤〉] ~R =
[〈𝐴, 𝐵〉] ~R ∧
[〈𝑣, 𝑢〉]
~R = [〈𝐶, 𝐷〉] ~R ) ↔
((𝑧
+P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))) |
10 | | oveq12 5862 |
. . . . . . 7
⊢ (((𝑧 +P
𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P
(𝑢
+P 𝐶)) = ((𝑤 +P 𝐴) +P
(𝑣
+P 𝐷))) |
11 | 10 | adantl 275 |
. . . . . 6
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ ((𝑧 +P
𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝐵) +P
(𝑢
+P 𝐶)) = ((𝑤 +P 𝐴) +P
(𝑣
+P 𝐷))) |
12 | | simprlr 533 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝑢
∈ P) |
13 | | simplrr 531 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝐵
∈ P) |
14 | | addcomprg 7540 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ P ∧
𝐵 ∈ P)
→ (𝑢
+P 𝐵) = (𝐵 +P 𝑢)) |
15 | 14 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ P ∧
𝐵 ∈ P)
→ ((𝑢
+P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P
𝐶)) |
16 | 12, 13, 15 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑢 +P 𝐵) +P
𝐶) = ((𝐵 +P 𝑢) +P
𝐶)) |
17 | | simprrl 534 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝐶
∈ P) |
18 | | addassprg 7541 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ P ∧
𝐵 ∈ P
∧ 𝐶 ∈
P) → ((𝑢
+P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P
𝐶))) |
19 | 12, 13, 17, 18 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑢 +P 𝐵) +P
𝐶) = (𝑢 +P (𝐵 +P
𝐶))) |
20 | | addassprg 7541 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ P ∧
𝑢 ∈ P
∧ 𝐶 ∈
P) → ((𝐵
+P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P
𝐶))) |
21 | 13, 12, 17, 20 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝐵 +P 𝑢) +P
𝐶) = (𝐵 +P (𝑢 +P
𝐶))) |
22 | 16, 19, 21 | 3eqtr3d 2211 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑢 +P (𝐵 +P
𝐶)) = (𝐵 +P (𝑢 +P
𝐶))) |
23 | 22 | oveq2d 5869 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑧 +P (𝑢 +P
(𝐵
+P 𝐶))) = (𝑧 +P (𝐵 +P
(𝑢
+P 𝐶)))) |
24 | | simplll 528 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝑧
∈ P) |
25 | | addclpr 7499 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P)
→ (𝑤
+P 𝑣) ∈ P) |
26 | 25 | ad2ant2lr 507 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) → (𝑤 +P 𝑣) ∈
P) |
27 | | addclpr 7499 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ P ∧
𝐶 ∈ P)
→ (𝐵
+P 𝐶) ∈ P) |
28 | 27 | ad2ant2lr 507 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → (𝐵 +P 𝐶) ∈
P) |
29 | 26, 28 | anim12ci 337 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝑣 ∈
P ∧ 𝑢
∈ P)) ∧ ((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝐵 +P 𝐶) ∈ P ∧
(𝑤
+P 𝑣) ∈ P)) |
30 | 29 | an4s 583 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝐵 +P 𝐶) ∈ P ∧
(𝑤
+P 𝑣) ∈ P)) |
31 | 30 | simpld 111 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝐵 +P 𝐶) ∈
P) |
32 | | addassprg 7541 |
. . . . . . . . 9
⊢ ((𝑧 ∈ P ∧
𝑢 ∈ P
∧ (𝐵
+P 𝐶) ∈ P) → ((𝑧 +P
𝑢)
+P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P
(𝐵
+P 𝐶)))) |
33 | 24, 12, 31, 32 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = (𝑧 +P (𝑢 +P
(𝐵
+P 𝐶)))) |
34 | | addclpr 7499 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ P ∧
𝐶 ∈ P)
→ (𝑢
+P 𝐶) ∈ P) |
35 | 12, 17, 34 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑢 +P 𝐶) ∈
P) |
36 | | addassprg 7541 |
. . . . . . . . 9
⊢ ((𝑧 ∈ P ∧
𝐵 ∈ P
∧ (𝑢
+P 𝐶) ∈ P) → ((𝑧 +P
𝐵)
+P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P
(𝑢
+P 𝐶)))) |
37 | 24, 13, 35, 36 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑧 +P 𝐵) +P
(𝑢
+P 𝐶)) = (𝑧 +P (𝐵 +P
(𝑢
+P 𝐶)))) |
38 | 23, 33, 37 | 3eqtr4d 2213 |
. . . . . . 7
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = ((𝑧 +P 𝐵) +P
(𝑢
+P 𝐶))) |
39 | 38 | adantr 274 |
. . . . . 6
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ ((𝑧 +P
𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = ((𝑧 +P 𝐵) +P
(𝑢
+P 𝐶))) |
40 | | simprll 532 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝑣
∈ P) |
41 | | simplrl 530 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝐴
∈ P) |
42 | | addcomprg 7540 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ P ∧
𝐴 ∈ P)
→ (𝑣
+P 𝐴) = (𝐴 +P 𝑣)) |
43 | 40, 41, 42 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣)) |
44 | 43 | oveq1d 5868 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑣 +P 𝐴) +P
𝐷) = ((𝐴 +P 𝑣) +P
𝐷)) |
45 | | simprrr 535 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝐷
∈ P) |
46 | | addassprg 7541 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ P ∧
𝐴 ∈ P
∧ 𝐷 ∈
P) → ((𝑣
+P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P
𝐷))) |
47 | 40, 41, 45, 46 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑣 +P 𝐴) +P
𝐷) = (𝑣 +P (𝐴 +P
𝐷))) |
48 | | addassprg 7541 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ P
∧ 𝐷 ∈
P) → ((𝐴
+P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P
𝐷))) |
49 | 41, 40, 45, 48 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝐴 +P 𝑣) +P
𝐷) = (𝐴 +P (𝑣 +P
𝐷))) |
50 | 44, 47, 49 | 3eqtr3d 2211 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑣 +P (𝐴 +P
𝐷)) = (𝐴 +P (𝑣 +P
𝐷))) |
51 | 50 | oveq2d 5869 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑤 +P (𝑣 +P
(𝐴
+P 𝐷))) = (𝑤 +P (𝐴 +P
(𝑣
+P 𝐷)))) |
52 | | simpllr 529 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → 𝑤
∈ P) |
53 | | addclpr 7499 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝐷 ∈ P)
→ (𝐴
+P 𝐷) ∈ P) |
54 | 41, 45, 53 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝐴 +P 𝐷) ∈
P) |
55 | | addassprg 7541 |
. . . . . . . . 9
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P
∧ (𝐴
+P 𝐷) ∈ P) → ((𝑤 +P
𝑣)
+P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P
(𝐴
+P 𝐷)))) |
56 | 52, 40, 54, 55 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)) = (𝑤 +P (𝑣 +P
(𝐴
+P 𝐷)))) |
57 | | addclpr 7499 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ P ∧
𝐷 ∈ P)
→ (𝑣
+P 𝐷) ∈ P) |
58 | 40, 45, 57 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑣 +P 𝐷) ∈
P) |
59 | | addassprg 7541 |
. . . . . . . . 9
⊢ ((𝑤 ∈ P ∧
𝐴 ∈ P
∧ (𝑣
+P 𝐷) ∈ P) → ((𝑤 +P
𝐴)
+P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P
(𝑣
+P 𝐷)))) |
60 | 52, 41, 58, 59 | syl3anc 1233 |
. . . . . . . 8
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑤 +P 𝐴) +P
(𝑣
+P 𝐷)) = (𝑤 +P (𝐴 +P
(𝑣
+P 𝐷)))) |
61 | 51, 56, 60 | 3eqtr4d 2213 |
. . . . . . 7
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)) = ((𝑤 +P 𝐴) +P
(𝑣
+P 𝐷))) |
62 | 61 | adantr 274 |
. . . . . 6
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ ((𝑧 +P
𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)) = ((𝑤 +P 𝐴) +P
(𝑣
+P 𝐷))) |
63 | 11, 39, 62 | 3eqtr4d 2213 |
. . . . 5
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ ((𝑧 +P
𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷))) |
64 | 63 | ex 114 |
. . . 4
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)))) |
65 | 9, 64 | sylbid 149 |
. . 3
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (([〈𝑧, 𝑤〉] ~R =
[〈𝐴, 𝐵〉] ~R ∧
[〈𝑣, 𝑢〉]
~R = [〈𝐶, 𝐷〉] ~R ) →
((𝑧
+P 𝑢) +P (𝐵 +P
𝐶)) = ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)))) |
66 | | ltaprg 7581 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑓 ∈
P) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P
(𝑓
+P 𝑦))) |
67 | 66 | adantl 275 |
. . . 4
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ (𝑥 ∈ P ∧
𝑦 ∈ P
∧ 𝑓 ∈
P)) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P
(𝑓
+P 𝑦))) |
68 | | addclpr 7499 |
. . . . 5
⊢ ((𝑧 ∈ P ∧
𝑢 ∈ P)
→ (𝑧
+P 𝑢) ∈ P) |
69 | 24, 12, 68 | syl2anc 409 |
. . . 4
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑧 +P 𝑢) ∈
P) |
70 | 30 | simprd 113 |
. . . 4
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (𝑤 +P 𝑣) ∈
P) |
71 | | addcomprg 7540 |
. . . . 5
⊢ ((𝑥 ∈ P ∧
𝑦 ∈ P)
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
72 | 71 | adantl 275 |
. . . 4
⊢
(((((𝑧 ∈
P ∧ 𝑤
∈ P) ∧ (𝐴 ∈ P ∧ 𝐵 ∈ P)) ∧
((𝑣 ∈ P
∧ 𝑢 ∈
P) ∧ (𝐶
∈ P ∧ 𝐷 ∈ P))) ∧ (𝑥 ∈ P ∧
𝑦 ∈ P))
→ (𝑥
+P 𝑦) = (𝑦 +P 𝑥)) |
73 | 67, 69, 31, 70, 72, 54 | caovord3d 6023 |
. . 3
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (((𝑧 +P 𝑢) +P
(𝐵
+P 𝐶)) = ((𝑤 +P 𝑣) +P
(𝐴
+P 𝐷)) → ((𝑧 +P 𝑢)<P
(𝑤
+P 𝑣) ↔ (𝐴 +P 𝐷)<P
(𝐵
+P 𝐶)))) |
74 | 65, 73 | syld 45 |
. 2
⊢ ((((𝑧 ∈ P ∧
𝑤 ∈ P)
∧ (𝐴 ∈
P ∧ 𝐵
∈ P)) ∧ ((𝑣 ∈ P ∧ 𝑢 ∈ P) ∧
(𝐶 ∈ P
∧ 𝐷 ∈
P))) → (([〈𝑧, 𝑤〉] ~R =
[〈𝐴, 𝐵〉] ~R ∧
[〈𝑣, 𝑢〉]
~R = [〈𝐶, 𝐷〉] ~R ) →
((𝑧
+P 𝑢)<P (𝑤 +P
𝑣) ↔ (𝐴 +P
𝐷)<P (𝐵 +P
𝐶)))) |
75 | 1, 2, 3, 4, 74 | brecop 6603 |
1
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝐶 ∈
P ∧ 𝐷
∈ P)) → ([〈𝐴, 𝐵〉] ~R
<R [〈𝐶, 𝐷〉] ~R ↔
(𝐴
+P 𝐷)<P (𝐵 +P
𝐶))) |