ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg GIF version

Theorem ltsrprg 7709
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))

Proof of Theorem ltsrprg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 7699 . 2 ~R ∈ V
2 enrer 7697 . 2 ~R Er (P × P)
3 df-nr 7689 . 2 R = ((P × P) / ~R )
4 df-ltr 7692 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
5 enreceq 7698 . . . . 5 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
6 enreceq 7698 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
7 eqcom 2172 . . . . . 6 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
86, 7bitrdi 195 . . . . 5 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
95, 8bi2anan9 601 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
10 oveq12 5862 . . . . . . 7 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
1110adantl 275 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
12 simprlr 533 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑢P)
13 simplrr 531 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐵P)
14 addcomprg 7540 . . . . . . . . . . . 12 ((𝑢P𝐵P) → (𝑢 +P 𝐵) = (𝐵 +P 𝑢))
1514oveq1d 5868 . . . . . . . . . . 11 ((𝑢P𝐵P) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
1612, 13, 15syl2anc 409 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
17 simprrl 534 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐶P)
18 addassprg 7541 . . . . . . . . . . 11 ((𝑢P𝐵P𝐶P) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
1912, 13, 17, 18syl3anc 1233 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
20 addassprg 7541 . . . . . . . . . . 11 ((𝐵P𝑢P𝐶P) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2113, 12, 17, 20syl3anc 1233 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2216, 19, 213eqtr3d 2211 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶)))
2322oveq2d 5869 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
24 simplll 528 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑧P)
25 addclpr 7499 . . . . . . . . . . . . 13 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
2625ad2ant2lr 507 . . . . . . . . . . . 12 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
27 addclpr 7499 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2827ad2ant2lr 507 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
2926, 28anim12ci 337 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3029an4s 583 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3130simpld 111 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐵 +P 𝐶) ∈ P)
32 addassprg 7541 . . . . . . . . 9 ((𝑧P𝑢P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
3324, 12, 31, 32syl3anc 1233 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
34 addclpr 7499 . . . . . . . . . 10 ((𝑢P𝐶P) → (𝑢 +P 𝐶) ∈ P)
3512, 17, 34syl2anc 409 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P 𝐶) ∈ P)
36 addassprg 7541 . . . . . . . . 9 ((𝑧P𝐵P ∧ (𝑢 +P 𝐶) ∈ P) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3724, 13, 35, 36syl3anc 1233 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3823, 33, 373eqtr4d 2213 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
3938adantr 274 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
40 simprll 532 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑣P)
41 simplrl 530 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐴P)
42 addcomprg 7540 . . . . . . . . . . . 12 ((𝑣P𝐴P) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4340, 41, 42syl2anc 409 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4443oveq1d 5868 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷))
45 simprrr 535 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐷P)
46 addassprg 7541 . . . . . . . . . . 11 ((𝑣P𝐴P𝐷P) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
4740, 41, 45, 46syl3anc 1233 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
48 addassprg 7541 . . . . . . . . . . 11 ((𝐴P𝑣P𝐷P) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
4941, 40, 45, 48syl3anc 1233 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
5044, 47, 493eqtr3d 2211 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷)))
5150oveq2d 5869 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
52 simpllr 529 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑤P)
53 addclpr 7499 . . . . . . . . . 10 ((𝐴P𝐷P) → (𝐴 +P 𝐷) ∈ P)
5441, 45, 53syl2anc 409 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐴 +P 𝐷) ∈ P)
55 addassprg 7541 . . . . . . . . 9 ((𝑤P𝑣P ∧ (𝐴 +P 𝐷) ∈ P) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
5652, 40, 54, 55syl3anc 1233 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
57 addclpr 7499 . . . . . . . . . 10 ((𝑣P𝐷P) → (𝑣 +P 𝐷) ∈ P)
5840, 45, 57syl2anc 409 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐷) ∈ P)
59 addassprg 7541 . . . . . . . . 9 ((𝑤P𝐴P ∧ (𝑣 +P 𝐷) ∈ P) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6052, 41, 58, 59syl3anc 1233 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6151, 56, 603eqtr4d 2213 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6261adantr 274 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6311, 39, 623eqtr4d 2213 . . . . 5 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
6463ex 114 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
659, 64sylbid 149 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
66 ltaprg 7581 . . . . 5 ((𝑥P𝑦P𝑓P) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
6766adantl 275 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P𝑓P)) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
68 addclpr 7499 . . . . 5 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
6924, 12, 68syl2anc 409 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P 𝑢) ∈ P)
7030simprd 113 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P 𝑣) ∈ P)
71 addcomprg 7540 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7271adantl 275 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7367, 69, 31, 70, 72, 54caovord3d 6023 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
7465, 73syld 45 . 2 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
751, 2, 3, 4, 74brecop 6603 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  (class class class)co 5853  [cec 6511  Pcnp 7253   +P cpp 7255  <P cltp 7257   ~R cer 7258  Rcnr 7259   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692
This theorem is referenced by:  gt0srpr  7710  lttrsr  7724  ltposr  7725  ltsosr  7726  0lt1sr  7727  ltasrg  7732  aptisr  7741  mulextsr1  7743  archsr  7744  prsrlt  7749  ltpsrprg  7765  mappsrprg  7766  map2psrprg  7767  pitoregt0  7811
  Copyright terms: Public domain W3C validator