ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg GIF version

Theorem ltsrprg 7194
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))

Proof of Theorem ltsrprg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 7184 . 2 ~R ∈ V
2 enrer 7182 . 2 ~R Er (P × P)
3 df-nr 7174 . 2 R = ((P × P) / ~R )
4 df-ltr 7177 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
5 enreceq 7183 . . . . 5 (((𝑧P𝑤P) ∧ (𝐴P𝐵P)) → ([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ↔ (𝑧 +P 𝐵) = (𝑤 +P 𝐴)))
6 enreceq 7183 . . . . . 6 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑣 +P 𝐷) = (𝑢 +P 𝐶)))
7 eqcom 2085 . . . . . 6 ((𝑣 +P 𝐷) = (𝑢 +P 𝐶) ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))
86, 7syl6bb 194 . . . . 5 (((𝑣P𝑢P) ∧ (𝐶P𝐷P)) → ([⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ↔ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)))
95, 8bi2anan9 571 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) ↔ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))))
10 oveq12 5598 . . . . . . 7 (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
1110adantl 271 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
12 simprlr 505 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑢P)
13 simplrr 503 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐵P)
14 addcomprg 7038 . . . . . . . . . . . 12 ((𝑢P𝐵P) → (𝑢 +P 𝐵) = (𝐵 +P 𝑢))
1514oveq1d 5604 . . . . . . . . . . 11 ((𝑢P𝐵P) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
1612, 13, 15syl2anc 403 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = ((𝐵 +P 𝑢) +P 𝐶))
17 simprrl 506 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐶P)
18 addassprg 7039 . . . . . . . . . . 11 ((𝑢P𝐵P𝐶P) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
1912, 13, 17, 18syl3anc 1170 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑢 +P 𝐵) +P 𝐶) = (𝑢 +P (𝐵 +P 𝐶)))
20 addassprg 7039 . . . . . . . . . . 11 ((𝐵P𝑢P𝐶P) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2113, 12, 17, 20syl3anc 1170 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝑢) +P 𝐶) = (𝐵 +P (𝑢 +P 𝐶)))
2216, 19, 213eqtr3d 2123 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P (𝐵 +P 𝐶)) = (𝐵 +P (𝑢 +P 𝐶)))
2322oveq2d 5605 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
24 simplll 500 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑧P)
25 addclpr 6997 . . . . . . . . . . . . 13 ((𝑤P𝑣P) → (𝑤 +P 𝑣) ∈ P)
2625ad2ant2lr 494 . . . . . . . . . . . 12 (((𝑧P𝑤P) ∧ (𝑣P𝑢P)) → (𝑤 +P 𝑣) ∈ P)
27 addclpr 6997 . . . . . . . . . . . . 13 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2827ad2ant2lr 494 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → (𝐵 +P 𝐶) ∈ P)
2926, 28anim12ci 332 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝑣P𝑢P)) ∧ ((𝐴P𝐵P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3029an4s 553 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐵 +P 𝐶) ∈ P ∧ (𝑤 +P 𝑣) ∈ P))
3130simpld 110 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐵 +P 𝐶) ∈ P)
32 addassprg 7039 . . . . . . . . 9 ((𝑧P𝑢P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
3324, 12, 31, 32syl3anc 1170 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = (𝑧 +P (𝑢 +P (𝐵 +P 𝐶))))
34 addclpr 6997 . . . . . . . . . 10 ((𝑢P𝐶P) → (𝑢 +P 𝐶) ∈ P)
3512, 17, 34syl2anc 403 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑢 +P 𝐶) ∈ P)
36 addassprg 7039 . . . . . . . . 9 ((𝑧P𝐵P ∧ (𝑢 +P 𝐶) ∈ P) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3724, 13, 35, 36syl3anc 1170 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)) = (𝑧 +P (𝐵 +P (𝑢 +P 𝐶))))
3823, 33, 373eqtr4d 2125 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
3938adantr 270 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑧 +P 𝐵) +P (𝑢 +P 𝐶)))
40 simprll 504 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑣P)
41 simplrl 502 . . . . . . . . . . . 12 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐴P)
42 addcomprg 7038 . . . . . . . . . . . 12 ((𝑣P𝐴P) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4340, 41, 42syl2anc 403 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐴) = (𝐴 +P 𝑣))
4443oveq1d 5604 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = ((𝐴 +P 𝑣) +P 𝐷))
45 simprrr 507 . . . . . . . . . . 11 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝐷P)
46 addassprg 7039 . . . . . . . . . . 11 ((𝑣P𝐴P𝐷P) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
4740, 41, 45, 46syl3anc 1170 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑣 +P 𝐴) +P 𝐷) = (𝑣 +P (𝐴 +P 𝐷)))
48 addassprg 7039 . . . . . . . . . . 11 ((𝐴P𝑣P𝐷P) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
4941, 40, 45, 48syl3anc 1170 . . . . . . . . . 10 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝐴 +P 𝑣) +P 𝐷) = (𝐴 +P (𝑣 +P 𝐷)))
5044, 47, 493eqtr3d 2123 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P (𝐴 +P 𝐷)) = (𝐴 +P (𝑣 +P 𝐷)))
5150oveq2d 5605 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
52 simpllr 501 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → 𝑤P)
53 addclpr 6997 . . . . . . . . . 10 ((𝐴P𝐷P) → (𝐴 +P 𝐷) ∈ P)
5441, 45, 53syl2anc 403 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝐴 +P 𝐷) ∈ P)
55 addassprg 7039 . . . . . . . . 9 ((𝑤P𝑣P ∧ (𝐴 +P 𝐷) ∈ P) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
5652, 40, 54, 55syl3anc 1170 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = (𝑤 +P (𝑣 +P (𝐴 +P 𝐷))))
57 addclpr 6997 . . . . . . . . . 10 ((𝑣P𝐷P) → (𝑣 +P 𝐷) ∈ P)
5840, 45, 57syl2anc 403 . . . . . . . . 9 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑣 +P 𝐷) ∈ P)
59 addassprg 7039 . . . . . . . . 9 ((𝑤P𝐴P ∧ (𝑣 +P 𝐷) ∈ P) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6052, 41, 58, 59syl3anc 1170 . . . . . . . 8 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)) = (𝑤 +P (𝐴 +P (𝑣 +P 𝐷))))
6151, 56, 603eqtr4d 2125 . . . . . . 7 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6261adantr 270 . . . . . 6 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) = ((𝑤 +P 𝐴) +P (𝑣 +P 𝐷)))
6311, 39, 623eqtr4d 2125 . . . . 5 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ ((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷))) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)))
6463ex 113 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝐵) = (𝑤 +P 𝐴) ∧ (𝑢 +P 𝐶) = (𝑣 +P 𝐷)) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
659, 64sylbid 148 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷))))
66 ltaprg 7079 . . . . 5 ((𝑥P𝑦P𝑓P) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
6766adantl 271 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P𝑓P)) → (𝑥<P 𝑦 ↔ (𝑓 +P 𝑥)<P (𝑓 +P 𝑦)))
68 addclpr 6997 . . . . 5 ((𝑧P𝑢P) → (𝑧 +P 𝑢) ∈ P)
6924, 12, 68syl2anc 403 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑧 +P 𝑢) ∈ P)
7030simprd 112 . . . 4 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (𝑤 +P 𝑣) ∈ P)
71 addcomprg 7038 . . . . 5 ((𝑥P𝑦P) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7271adantl 271 . . . 4 (((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) ∧ (𝑥P𝑦P)) → (𝑥 +P 𝑦) = (𝑦 +P 𝑥))
7367, 69, 31, 70, 72, 54caovord3d 5748 . . 3 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (((𝑧 +P 𝑢) +P (𝐵 +P 𝐶)) = ((𝑤 +P 𝑣) +P (𝐴 +P 𝐷)) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
7465, 73syld 44 . 2 ((((𝑧P𝑤P) ∧ (𝐴P𝐵P)) ∧ ((𝑣P𝑢P) ∧ (𝐶P𝐷P))) → (([⟨𝑧, 𝑤⟩] ~R = [⟨𝐴, 𝐵⟩] ~R ∧ [⟨𝑣, 𝑢⟩] ~R = [⟨𝐶, 𝐷⟩] ~R ) → ((𝑧 +P 𝑢)<P (𝑤 +P 𝑣) ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))))
751, 2, 3, 4, 74brecop 6310 1 (((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ([⟨𝐴, 𝐵⟩] ~R <R [⟨𝐶, 𝐷⟩] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  cop 3425   class class class wbr 3811  (class class class)co 5589  [cec 6218  Pcnp 6751   +P cpp 6753  <P cltp 6755   ~R cer 6756  Rcnr 6757   <R cltr 6763
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-1o 6111  df-2o 6112  df-oadd 6115  df-omul 6116  df-er 6220  df-ec 6222  df-qs 6226  df-ni 6764  df-pli 6765  df-mi 6766  df-lti 6767  df-plpq 6804  df-mpq 6805  df-enq 6807  df-nqqs 6808  df-plqqs 6809  df-mqqs 6810  df-1nqqs 6811  df-rq 6812  df-ltnqqs 6813  df-enq0 6884  df-nq0 6885  df-0nq0 6886  df-plq0 6887  df-mq0 6888  df-inp 6926  df-iplp 6928  df-iltp 6930  df-enr 7173  df-nr 7174  df-ltr 7177
This theorem is referenced by:  gt0srpr  7195  lttrsr  7209  ltposr  7210  ltsosr  7211  0lt1sr  7212  ltasrg  7217  aptisr  7225  mulextsr1  7227  archsr  7228  prsrlt  7233  pitoregt0  7287
  Copyright terms: Public domain W3C validator