| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version | ||
| Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelsr | ⊢ <R ⊆ (R × R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltr 7878 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
| 2 | opabssxp 4767 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
| 3 | 1, 2 | eqsstri 3233 | 1 ⊢ <R ⊆ (R × R) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 ⊆ wss 3174 〈cop 3646 class class class wbr 4059 {copab 4120 × cxp 4691 (class class class)co 5967 [cec 6641 +P cpp 7441 <P cltp 7443 ~R cer 7444 Rcnr 7445 <R cltr 7451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-opab 4122 df-xp 4699 df-ltr 7878 |
| This theorem is referenced by: gt0srpr 7896 recexgt0sr 7921 addgt0sr 7923 mulgt0sr 7926 caucvgsrlemcl 7937 caucvgsrlemasr 7938 caucvgsrlemfv 7939 map2psrprg 7953 suplocsrlemb 7954 suplocsrlempr 7955 suplocsrlem 7956 suplocsr 7957 ltresr 7987 axpre-ltirr 8030 axpre-lttrn 8032 |
| Copyright terms: Public domain | W3C validator |