![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 7197 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 4473 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3042 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1287 ∃wex 1424 ∈ wcel 1436 ⊆ wss 2986 〈cop 3428 class class class wbr 3814 {copab 3867 × cxp 4402 (class class class)co 5594 [cec 6223 +P cpp 6773 <P cltp 6775 ~R cer 6776 Rcnr 6777 <R cltr 6783 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-in 2992 df-ss 2999 df-opab 3869 df-xp 4410 df-ltr 7197 |
This theorem is referenced by: gt0srpr 7215 recexgt0sr 7240 addgt0sr 7242 mulgt0sr 7244 caucvgsrlemcl 7255 caucvgsrlemasr 7256 caucvgsrlemfv 7257 ltresr 7297 axpre-ltirr 7338 axpre-lttrn 7340 |
Copyright terms: Public domain | W3C validator |