![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 7790 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 4733 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3211 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3153 〈cop 3621 class class class wbr 4029 {copab 4089 × cxp 4657 (class class class)co 5918 [cec 6585 +P cpp 7353 <P cltp 7355 ~R cer 7356 Rcnr 7357 <R cltr 7363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 df-ltr 7790 |
This theorem is referenced by: gt0srpr 7808 recexgt0sr 7833 addgt0sr 7835 mulgt0sr 7838 caucvgsrlemcl 7849 caucvgsrlemasr 7850 caucvgsrlemfv 7851 map2psrprg 7865 suplocsrlemb 7866 suplocsrlempr 7867 suplocsrlem 7868 suplocsr 7869 ltresr 7899 axpre-ltirr 7942 axpre-lttrn 7944 |
Copyright terms: Public domain | W3C validator |