ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr GIF version

Theorem ltrelsr 7798
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr <R ⊆ (R × R)

Proof of Theorem ltrelsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7790 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
2 opabssxp 4733 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R)
31, 2eqsstri 3211 1 <R ⊆ (R × R)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  wss 3153  cop 3621   class class class wbr 4029  {copab 4089   × cxp 4657  (class class class)co 5918  [cec 6585   +P cpp 7353  <P cltp 7355   ~R cer 7356  Rcnr 7357   <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-ltr 7790
This theorem is referenced by:  gt0srpr  7808  recexgt0sr  7833  addgt0sr  7835  mulgt0sr  7838  caucvgsrlemcl  7849  caucvgsrlemasr  7850  caucvgsrlemfv  7851  map2psrprg  7865  suplocsrlemb  7866  suplocsrlempr  7867  suplocsrlem  7868  suplocsr  7869  ltresr  7899  axpre-ltirr  7942  axpre-lttrn  7944
  Copyright terms: Public domain W3C validator