ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelsr GIF version

Theorem ltrelsr 7824
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelsr <R ⊆ (R × R)

Proof of Theorem ltrelsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltr 7816 . 2 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
2 opabssxp 4738 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R)
31, 2eqsstri 3216 1 <R ⊆ (R × R)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  wss 3157  cop 3626   class class class wbr 4034  {copab 4094   × cxp 4662  (class class class)co 5925  [cec 6599   +P cpp 7379  <P cltp 7381   ~R cer 7382  Rcnr 7383   <R cltr 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-opab 4096  df-xp 4670  df-ltr 7816
This theorem is referenced by:  gt0srpr  7834  recexgt0sr  7859  addgt0sr  7861  mulgt0sr  7864  caucvgsrlemcl  7875  caucvgsrlemasr  7876  caucvgsrlemfv  7877  map2psrprg  7891  suplocsrlemb  7892  suplocsrlempr  7893  suplocsrlem  7894  suplocsr  7895  ltresr  7925  axpre-ltirr  7968  axpre-lttrn  7970
  Copyright terms: Public domain W3C validator