| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version | ||
| Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelsr | ⊢ <R ⊆ (R × R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltr 7913 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
| 2 | opabssxp 4792 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
| 3 | 1, 2 | eqsstri 3256 | 1 ⊢ <R ⊆ (R × R) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 {copab 4143 × cxp 4716 (class class class)co 6000 [cec 6676 +P cpp 7476 <P cltp 7478 ~R cer 7479 Rcnr 7480 <R cltr 7486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4724 df-ltr 7913 |
| This theorem is referenced by: gt0srpr 7931 recexgt0sr 7956 addgt0sr 7958 mulgt0sr 7961 caucvgsrlemcl 7972 caucvgsrlemasr 7973 caucvgsrlemfv 7974 map2psrprg 7988 suplocsrlemb 7989 suplocsrlempr 7990 suplocsrlem 7991 suplocsr 7992 ltresr 8022 axpre-ltirr 8065 axpre-lttrn 8067 |
| Copyright terms: Public domain | W3C validator |