![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version |
Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelsr | ⊢ <R ⊆ (R × R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltr 7274 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
2 | opabssxp 4512 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
3 | 1, 2 | eqsstri 3056 | 1 ⊢ <R ⊆ (R × R) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1289 ∃wex 1426 ∈ wcel 1438 ⊆ wss 2999 〈cop 3449 class class class wbr 3845 {copab 3898 × cxp 4436 (class class class)co 5652 [cec 6288 +P cpp 6850 <P cltp 6852 ~R cer 6853 Rcnr 6854 <R cltr 6860 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-in 3005 df-ss 3012 df-opab 3900 df-xp 4444 df-ltr 7274 |
This theorem is referenced by: gt0srpr 7292 recexgt0sr 7317 addgt0sr 7319 mulgt0sr 7321 caucvgsrlemcl 7332 caucvgsrlemasr 7333 caucvgsrlemfv 7334 ltresr 7374 axpre-ltirr 7415 axpre-lttrn 7417 |
Copyright terms: Public domain | W3C validator |