| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelsr | GIF version | ||
| Description: Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelsr | ⊢ <R ⊆ (R × R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltr 7797 | . 2 ⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | |
| 2 | opabssxp 4737 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} ⊆ (R × R) | |
| 3 | 1, 2 | eqsstri 3215 | 1 ⊢ <R ⊆ (R × R) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 〈cop 3625 class class class wbr 4033 {copab 4093 × cxp 4661 (class class class)co 5922 [cec 6590 +P cpp 7360 <P cltp 7362 ~R cer 7363 Rcnr 7364 <R cltr 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 df-ltr 7797 |
| This theorem is referenced by: gt0srpr 7815 recexgt0sr 7840 addgt0sr 7842 mulgt0sr 7845 caucvgsrlemcl 7856 caucvgsrlemasr 7857 caucvgsrlemfv 7858 map2psrprg 7872 suplocsrlemb 7873 suplocsrlempr 7874 suplocsrlem 7875 suplocsr 7876 ltresr 7906 axpre-ltirr 7949 axpre-lttrn 7951 |
| Copyright terms: Public domain | W3C validator |