Detailed syntax breakdown of Definition df-ltxr
| Step | Hyp | Ref
| Expression |
| 1 | | clt 8061 |
. 2
class
< |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1363 |
. . . . . 6
class 𝑥 |
| 4 | | cr 7878 |
. . . . . 6
class
ℝ |
| 5 | 3, 4 | wcel 2167 |
. . . . 5
wff 𝑥 ∈ ℝ |
| 6 | | vy |
. . . . . . 7
setvar 𝑦 |
| 7 | 6 | cv 1363 |
. . . . . 6
class 𝑦 |
| 8 | 7, 4 | wcel 2167 |
. . . . 5
wff 𝑦 ∈ ℝ |
| 9 | | cltrr 7883 |
. . . . . 6
class
<ℝ |
| 10 | 3, 7, 9 | wbr 4033 |
. . . . 5
wff 𝑥 <ℝ 𝑦 |
| 11 | 5, 8, 10 | w3a 980 |
. . . 4
wff (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦) |
| 12 | 11, 2, 6 | copab 4093 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} |
| 13 | | cmnf 8059 |
. . . . . . 7
class
-∞ |
| 14 | 13 | csn 3622 |
. . . . . 6
class
{-∞} |
| 15 | 4, 14 | cun 3155 |
. . . . 5
class (ℝ
∪ {-∞}) |
| 16 | | cpnf 8058 |
. . . . . 6
class
+∞ |
| 17 | 16 | csn 3622 |
. . . . 5
class
{+∞} |
| 18 | 15, 17 | cxp 4661 |
. . . 4
class ((ℝ
∪ {-∞}) × {+∞}) |
| 19 | 14, 4 | cxp 4661 |
. . . 4
class
({-∞} × ℝ) |
| 20 | 18, 19 | cun 3155 |
. . 3
class
(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞}
× ℝ)) |
| 21 | 12, 20 | cun 3155 |
. 2
class
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} ×
ℝ))) |
| 22 | 1, 21 | wceq 1364 |
1
wff < =
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪
{-∞}) × {+∞}) ∪ ({-∞} ×
ℝ))) |